102
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Phenylalanine 4-monooxygenase and the role of endobiotic metabolism enzymes in xenobiotic biotransformation

&
Pages 1213-1221 | Published online: 04 Aug 2009
 

Abstract

Phenylalanine 4-monooxygenase is the key enzyme in the sulfoxidation of the thioether drug S-carboxymethyl-l-cysteine and its thioether metabolites, S-methyl-l-cysteine, N-acetyl-S-carboxymethyl-l-cysteine and N-acetyl-S-methyl-l-cysteine in humans, and a number of other mammalian species. The kinetics constants of the sulfoxidation reaction (Km, Vmax and CLE) have been investigated in cytosolic fractions derived from rat and human liver, in cytosolic fractions of HepG2 cells and using both human and mouse cDNA expressed phenylalanine 4-monooxygenase. Differences in Km, Vmax and CLE of S-carboxymethyl-l-cysteine have been seen in HepG2 cells and human and mouse cDNA expressed phenylalanine 4-monooxygenase when compared to both rat and human hepatic cytosolic fractions. The association of the genetic polymorphism in the sulfoxidation of S-carboxymethyl-l-cysteine is highlighted with particular reference to this biotransformation reaction as being a biomarker of disease susceptibility in Parkinson's, Alzheimer's and motor neurone diseases and in rheumatoid arthritis. The possible underlying molecular genetics of the sulfoxidation polymorphism is also discussed in relation to the known allelic frequencies of phenylalanine 4-monooxygenase. Finally, the new found role phenylalanine 4-monooxygenase plays in xenobiotic metabolism is discussed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.