228
Views
24
CrossRef citations to date
0
Altmetric
Original Research

Identification of the metabolites of myricitrin produced by human intestinal bacteria in vitro using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry

, , , , , , , , , & show all
 

Abstract

Objective: To investigate the metabolic routes and metabolites of myricitrin, an important active ingredient of traditional herbal medicine, yielded by the isolated human intestinal bacteria, which have not been reported previously.

Methods: Fresh human fecal samples were collected from a healthy female volunteer and about 100 different bacterial colonies were isolated. Ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry technique combined with Metabolynx™ software was used for analysis of the metabolic profile of myricitrin by the isolated human intestinal bacteria.

Results: One hundred different bacterial colonies, which developed on plates, were picked up, and four of them were further identified by using the technique of 16S rRNA gene sequencing due to their relatively strong metabolic capacity toward myricitrin. Most of them belong to Escherichia. Parent compound and three metabolites (quercetin-3-O-rhamnoside, myricetin and quercetin) were detected in the isolated bacterial samples compared with blank samples. The metabolic pathways of myricitrin included deglycosylation and dehydroxylation.

Conclusions: These metabolites suggested that myricitrin was first dehydroxylated to quercetin-3-O-rhamnoside and subsequently deglycosylated to quercetin. Additionally, myricitrin could also be deglycosylated to the aglycon myricetin. Moreover, those metabolites might influence the biological effect of myricitrin in vivo, which led to affect the clinical effects of the medicinal plants and traditional herb medicines.

Notes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.