237
Views
8
CrossRef citations to date
0
Altmetric
Reviews

In vitro and in vivo models of celiac disease

, &
Pages 1113-1123 | Published online: 06 Oct 2009
 

Abstract

Background : Celiac disease is an autoimmune intestinal disease that develops in genetically susceptible individuals upon the ingestion of gluten. In vitro and in vivo models have addressed the roles of the following five elements in the pathogenesis of celiac disease: i) A tight association with human leukocyte antigen (HLA)-DQ2 and HLA-DQ8. ii) A strong B-cell response to the autoantigen tissue transglutaminase that preferentially reacts with certain gluten peptides and that is almost exclusively IgA. iii) An adaptive inflammatory immune response to gluten peptides that are antigenically presented on HLA-DQ2 or HLA-DQ8. iv) An improved antigenic presentation of most gluten peptides and a stronger T-cell response after their deamidation by tissue transglutaminase; and v) An increased risk for autoimmune diseases associated with celiac disease, such as dermatitis herpetiformis and type 1 diabetes. Objective: To summarize the different in vitro and in vivo models of celiac disease, their contributions to our understanding of the pathogenesis of celiac disease and the alternative therapies that have been tested using these models. Conclusion: These models, especially the animal models, are continuously being developed. They have contributed greatly to the development of alternative therapies for celiac disease and are being used increasingly to test their effectiveness and potential.

Notes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.