2
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Bionics solution to learn the arm reaching with collision avoidance

Pages 87-96 | Published online: 08 Jul 2010
 

Abstract

This article presents a learning model that simulates the control of an anthropomorphic arm kinematics motion. The objective is to reach and grasp a static prototypic object placed behind different kinds of obstacle in size and position. The network, composed of two generic neural network modules, learns to combine multi-modal arm-related information (trajectory parameters) as well as obstacle-related information (obstacle size and location). Our simulation was based on the notion of Via Point, which postulates that the motion planning that is divided into specific successive position of the arm. In order to determine these special points, an experimental protocol has been built and pertinent parameters have been integrated to the model. According to these studies, we propose an original method that takes into account the previous learning modules to determine the entire trajectory of the wrist in order to reach the same object placed behind two successive obstacles. The aim of this approach is to understand better the impact of experience in a task realisation and show that learning can be performed from previous initiation. Some results (applied to obstacle avoidance task) show the efficiency of the proposed method.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.