67
Views
19
CrossRef citations to date
0
Altmetric
Article

Endocrine Responses of Fast- and Slow-Growing Families of Channel Catfish

, , &
Pages 240-250 | Received 15 Mar 2007, Accepted 18 Jul 2007, Published online: 09 Jan 2011
 

Abstract

Sixty-eight families of USDA303 channel catfish Ictalurus punctatus were evaluated for growth performance for 30 d. The fastest- and slowest-growing catfish families were further evaluated to examine the hypothesis that genes or gene products associated with the growth regulatory and stress axes can be used to describe differences in growth performance. Research examined mRNA levels of genes involved in the growth hormone–insulin-like growth factor (GH–IGF) network in fast- (family A) and slow-growing (family H) USDA303 catfish. Fish (59.0 ± 2.4 g) were fed for 7 weeks, weighed, and had tissues for RNA extraction. The remaining fish were subjected to an acute 10-min dewatering stress. Insulin-like growth factor-II mRNA was higher in the muscle of fast-growing fish, while the levels of IGF-I receptor (IGF-IR) and IGF-II receptor (IGF-II) were similar. Muscle IGF-IIR mRNA was two-fold higher than muscle IGF-IR mRNA. There were no differences in liver and muscle IGF-I and GH receptor mRNA or pituitary GH mRNA between the fast- and slow-growing fish. Fast-growing fish consumed 135% more feed than slow-growing fish, though the abundances of ghrelin mRNA in the gut and neuropeptide Y mRNA in the hypothalamus were similar. Cortisol levels were negatively correlated to weight gain. These results suggest that the variation in growth between fast- and slow-growing USDA303 catfish is explained, in part, by the variation in the GH–IGF and stress axes. The relationship between cortisol and weight gain warrants further investigation for possible exploitation in our selective breeding program.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.