226
Views
48
CrossRef citations to date
0
Altmetric
Special Report

Computational models of epileptic activity: a bridge between observation and pathophysiological interpretation

Pages 889-896 | Published online: 09 Jan 2014
 

Abstract

Epilepsy is a neurological disorder characterized by the recurrence of seizures. It affects 50 million people worldwide. Although a considerable number of new antiepileptic drugs with reduced side effects and toxicity have been introduced since the 1950s, 30% of patients remain pharmacoresistant. Although epilepsy research is making progress, advances in understanding drug resistance have been hampered by the complexity of the underlying neuronal systems responsible for epileptic activity. In such systems where short- or long-term plasticity plays a role, pathophysiological alterations may take place at subcellular (i.e., membrane ion channels and neurotransmitter receptors), cellular (neurons), tissular (networks of neurons) and regional (networks of networks of neurons) scales. In such a context, the demand for integrative approaches is high and neurocomputational models become recognized tools for tackling the complexity of epileptic phenomena. The purpose of this report is to provide an overview on computational modeling as a way of structuring and interpreting multimodal data recorded from the epileptic brain. Some examples are briefly described, which illustrate how computational models closely related with either experimental or clinical data can markedly advance our understanding of essential issues in epilepsy such as the transition from background to seizure activity. A commentary is also made on the potential use of such models in the study of therapeutic strategies such as rational drug design or electrical stimulations.

Acknowledgements

I am grateful to my colleagues Isabelle Merlet, Jean-Jacques Bellanger, Lotfi Senhadji and Fabrice Bartolomei for reading and comments on the manuscript.

Financial & competing interests disclosure

The author has no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.