65
Views
21
CrossRef citations to date
0
Altmetric
Perspective

Stabilizing dendritic structure as a novel therapeutic approach for epilepsy

Pages 907-915 | Published online: 09 Jan 2014
 

Abstract

People with epilepsy often experience long-term cognitive dysfunction and other neurological deficits, including memory loss, learning disabilities and neurobehavioral disorders, which may exhibit a progressive course correlating with worsening seizure control. Furthermore, a third of epilepsy patients have seizures that are intractable to all available treatments. Thus, novel therapies for seizures and the neurological comorbidities of epilepsy are desperately needed. As most current treatments are merely symptomatic therapies that suppress seizures, epilepsy researchers have recently realized the critical need for novel therapeutic strategies targeting the underlying mechanisms of epileptogenesis and seizure-related brain injury. Yet, to date, few such antiepileptogenic therapies have emerged or are even in developmental stages. Although many seizure medications modulate the functional or physiological activity of neurons, the methods for stabilizing the structure of neurons are relatively unexplored therapeutic strategies for epilepsy. Human pathological studies and animal models of epilepsy demonstrate obvious structural abnormalities in dendrites of neurons, which could contribute to neuronal dysfunction, epileptogenesis and cognitive/neurological deficits in epilepsy patients. This dendritic injury may be caused by activity-dependent breakdown of cytoskeletal elements, such as actin. Mechanistically targeted approaches to limit seizure-related structural changes in dendrites may represent a novel therapeutic strategy for treating epilepsy and its complications.

Financial & competing interests disclosure

Michael Wong receives grant support from the National Institutes of Health (K02NS045583, R01NS056872) and the Tuberous Sclerosis Alliance.

The author has no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.