162
Views
9
CrossRef citations to date
0
Altmetric
Commentary

Smooth muscle-specific drug targets for next-generation drug-eluting stent

&
 

Abstract

The occurrence of stent thrombosis is one of the major obstacles limiting the long-term clinical efficacy of percutaneous coronary intervention. The anti-smooth muscle proliferation drugs coated on drug-eluting stents (DES) often indistinguishably block re-endothelialization, an essential step toward successful vascular repair, due to their nonspecific effect on endothelial cells (ECs). Therefore, identification of therapeutic targets that differentially regulate vascular smooth muscle cell (VSMC) and EC proliferation may lead to the development of ideal drugs for the next-generation DES. Our recent studies have shown that CTP synthase 1 (CTPS1) differentially regulates the proliferation of VSMC and EC after vascular injury. Therefore, CTPS1 inhibitors are promising agents for DES. In addition to CTPS1, other factors have also shown cell-specific effects on VSMC and/or EC proliferation and thus may become potential molecular targets for developing drugs to coat stents.

Financial & competing interests disclosure

This work was supported by grants from the NIH (HL093429 and HL107526 to S-Y Chen). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.