47
Views
16
CrossRef citations to date
0
Altmetric
Review

Skeletal actions of insulin-like growth factors

&
Pages 47-56 | Published online: 10 Jan 2014
 

Abstract

Insulin-like growth factors (IGFs) promote longitudinal growth and display anabolic effects in adult bone by acting through endocrine and autocrine/paracrine mechanisms. Binding of IGF-I to its specific tyrosine-kinase receptor leads to interaction with the intracellular proteins, insulin receptor substrate-1 and -2, and the activation of distinct intracellular signaling pathways. In cartilage, IGF-I regulates the differentiation of chondrocytes and stimulates the synthesis of components of the extracellular matrix. In bone tissue, IGF-I increases the function of the differentiated osteoblasts and mediates selected anabolic actions of parathyroid hormone. Genetically modified mice, in which selected components of the IGF system were targeted in a tissue-specific fashion, have documented that circulating IGF-I is essential for physiological skeletal growth and adult bone remodeling and that local autocrine/paracrine IGF-I activities are required for optimal trabecular bone mass and mineralization. Studies in humans have indicated a correlation between serum IGF-I levels and bone mineral density. However, there is little information on the use of IGF-I in patients with metabolic bone disease.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.