33
Views
5
CrossRef citations to date
0
Altmetric
Review

Notch–Hes signaling in pituitary development

, , &
Pages 91-100 | Published online: 10 Jan 2014
 

Abstract

The pituitary gland is a critical endocrine organ that controls homeostasis, metabolism, reproduction and growth. Pituitary organogenesis involves the initial proliferation process of progenitor cells and the subsequent differentiation process into distinct cell types. Although various signaling molecules and transcription factors play roles in the pituitary development, the mechanisms that control progenitor cells remain to be elucidated. The mammalian Hes basic helix–loop–helix genes, known as Notch effectors, play essential roles in the development of various tissues and organs by maintaining progenitor cells in an undifferentiated state and by regulating binary cell fate decisions. Recently, it has been reported that Hes genes play crucial roles in pituitary development by regulating progenitor cells. This review describes essential roles of Hes genes in pituitary development.

Financial & competing interests disclosure

This work was supported by research grants from the Japan Society for the Promotion of Science (No. 17659443 to M Hojo). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.