221
Views
61
CrossRef citations to date
0
Altmetric
Review

Recent advances in polymeric vitreous substitutes

&
Pages 255-265 | Published online: 09 Jan 2014
 

Abstract

The vitreous humor occupies two thirds of the volume of the eye and is the major component behind the lens. The human vitreous is a gelatinous substance predominantly composed of water (98–99%). Its functions include holding the retina in place and circulating metabolites throughout the eye. The vitreous liquifies with age, facilitating posterior vitreous detachment, which can lead to retinal tears, intravitreal hemorrhage or retinal detachment. Vitreous substitutes are needed to tamponade the retina or during vitrectomies for treatment of retinal detachments. Gases, perfluorocarbon liquids and silicone or fluorosilicone oils are currently used as vitreous substitutes; however, none of these substitutes can be used long term due to the short retention time of the gaseous substitutes, cell toxicity or other complications, such as glaucoma or cataracts. Vitreous substitutes, both experimental and clinical, will be reviewed, along with promising experimental artificial vitreous; polymeric hydrogels.

Acknowledgements

This research was supported by a Veterans Affairs Merit Review Grant to Nathan Ravi. Additional awards to the Department of Ophthalmology and Visual Sciences were from Research to Prevent Blindness, Inc. and the National Institute of Health (P30 EY 02687) Core grant.

References

  • Chirila TV, Tahija S, Hong Y, Vijayasekaran S, Constable IJ. Synthetic polymers as materials for artificial vitreous body: review and recent advances. J. Biomater. Appl.9, 121–137 (1994).
  • Gloor BP. The vitreous. In: Adler’s Physiology of the Eye. Clinical Application. Moses RA, Hart WM (Eds). The CV Mosby Co., MO, USA 246–267 (1987).
  • Snell R. Head and neck. In: Clinical Anatomy for Medical Students. Little, Brown, and Co., NY, USA 723–725 (1995).
  • Nickerson CS, Karageozian HL, Park J, Kornfield JA. Internal tension: a novel hypothesis concerning the mechanical properties of the vitreous humor. Macromol. Symp.227, 183–189 (2005).
  • Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body. Part I: viscoelasticity of human vitreous. Biorheology29, 521–533 (1992).
  • Bettelheim FA, Wang TJY. Dynamic viscoelastic properties of bovine vitreous. Exp. Eye Res.23, 435–441 (1976).
  • Zimmerman RL. In vivo measurements of the viscoelasticity of the human vitreous humor. Biophys. J.29, 539–544 (1980).
  • Tokita M, Fujiya Y, Hikichi K. Dynamic viscoelasticity of bovine vitreous body. Biorheology21, 751–756 (1984).
  • Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body. Part 2. Viscoelasticity of bovine and porcine vitreous. Biorheology31, 327–338 (1994).
  • Balazs EA. Functional anatomy of the vitreous. In: Biomedical Foundations of Ophthalmology. Tasman W, Jaeger EA (Eds). Lippincott, PA, USA 17, 1–16 (1989).
  • Balazs EA. Fine structure and function of ocular tissues. The vitreous. Int. Ophthalmol. Clin.13, 169–187 (1973).
  • Los LI, van der Worp RJ, van Luyn MJA, Hooymans JMM. Age-related liquefaction of the human vitreous body: LM and TEM evaluation of the role of proteoglycans and collagen. Invest. Ophthalmol. Vis. Sci.44, 2828–2833 (2003).
  • Colthurst MJ, Williams RL, Hiscott PS, Grierson I. Biomaterials used in the posterior segment of the eye. Biomaterials21, 649–665 (2000).
  • Giordano GG, Refojo MF. Silicone oils as vitreous substitutes. Prog. Polym. Sci.23, 509–532 (1998).
  • Jonas JB, Knorr HLJ, Rank RM, Budde WM. Retinal redetachment after removal of intraocular silicone oil tamponade. Br. J. Ophthalmol.85, 1203–1207 (2001).
  • Leaver PK, Billington BM. Vitrectomy and fluid/silicone-oil exchange for giant retinal tears: 5 years follow-up. Graefes Arch. Clin. Exp. Ophthalmol.227, 323–327 (1989).
  • Wolf S, Schon V, Meier P, Wiedemann P. Silicone oil-RMN3 mixture (“heavy silicone oil”) as internal tamponade for complicated retinal detachment. Retina23, 335–342 (2003).
  • Sparrow JR, Ortiz R, MacLeish PR, Chang S. Fibroblast behavior at aqueous interfaces with perfluorocarbon, silicone, and fluorosilicone liquids. Invest. Ophthalmol. Vis. Sci.31, 638–646 (1990).
  • Versura P, Cellini M, Torreggiani A et al. The biocompatibility of silicone, fluorosilicone and perfluorocarbon liquids as vitreous tamponades. Ophthalmologica215, 276–283 (2001).
  • Chan IM, Tolentino FI, Refojo MF, Fournier G, Albert DM. Vitreous substitute: experimental studies and review. Retina4, 51–59 (1984).
  • Chirila TV, Hong Y, Dalton PD, Constable IJ, Refojo MF. The use of hydrophilic polymers as artificial vitreous. Prog. Polym. Sci.23, 475–508 (1998).
  • Soman N, Banerjee R. Artificial vitreous replacements. Biomed. Mater. Eng.13, 59–74 (2003).
  • Deutschmann R. Zur operativen behandlung der netzhautablosung. Klin. Monastbl. Augenheilkd.44, 364–370 (1906).
  • Cutler NL. Vitreous transplantation. Trans. Am. Acad. Ophthalmol. Otolaryngol.52, 253–259 (1947).
  • Pruett RC, Calabria GA, Schepens CL. Collagen vitreous substitute: I. Experimental study. Arch. Ophthalmol.88, 540–543 (1972).
  • Nakagawa M, Tanaka M, Miyata T. Evaluation of collagen gel and hyaluronic acid as vitreous substitutes. Ophthalmic Res.29, 409–420 (1997).
  • Nayak PL. Biodegradable polymers: opportunities and challenges. JMS Rev. Macromol. Chem. Phys.C39, 481–505 (1999).
  • Pruett RC, Schepens CL, Freeman HM. Collagen vitreous substitute: II. Preliminary clinical trials. Arch. Ophthalmol.91, 29–32 (1974).
  • Liang C, Peyman GA, Serracarbassa P, Calixto N, Chow AA, Rao P. An evaluation of methylated collagen as a substitute for vitreous and aqueous humor. Int. Ophthalmol.22, 13–18 (1998).
  • Pruett RC, Schepens CL, Swann DA. Hyaluronic acid vitreous substitute: a six-year clinical evaluation. Arch. Ophthalmol.97, 2325–2330 (1979).
  • Oosterhuis JA, van Haeringen NJ, Jeltes IG, Glasius E. Polygeline as a vitreous substitute: I. Observations in rabbits. Arch. Ophthalmol.76, 258–265 (1966).
  • Suri S, Banerjee R. In vitro evaluation of in situ gels as short term vitreous substitutes. J. Biomed. Mater. Res.79A, 650–664 (2006).
  • Fernandez-Vigo J, Refojo MF, Verstraeten T. Evaluation of a viscoelastic solution of hydroxypropyl methylcellulose as a potential vitreous substitute. Retina10, 148–152 (1990).
  • Fernandez-Vigo J, Rey SAD, Concheiro A, Martinez R. Molecular weight dependence of the pharmacokinetic of hydroxypropyl methylcellulose in the vitreous. J. Ocul. Pharmacol.6(2), 137–142 (1990).
  • DeJong C, Bali E, Libert J, Caspers-Velu L. Adcon-L hydrogel as a vitreous substitute: preliminary results. Bull. Soc. Belge Ophthalmol.278, 71–75 (2000).
  • Davidorf FH, Chambers RB, Kwon OW, Doyle W, Gresak P, Frank SG. Ocular toxicity of vitreal pluronic polyol F-127. Retina10, 297–300 (1990).
  • Dalton PD, Chirila TV, Hong Y, Jefferson A. Oscillatory shear experiments as criteria for potential vitreous substitutes. Polym. Gels Netw.3, 429–444 (1995).
  • Hong Y, Chirila TV, Vijayasekaran S, Shen W, Lou X, Dalton PD. Biodegradation in vitro and retention in the rabbit eye of crosslinked poly(1-vinyl-2-pyrrolidinone) hydrogel as a vitreous substitute. J. Biomed. Mater. Res.39, 650–659 (1998).
  • Hong Y, Chirila TV, Vijayasekaran S et al. Crosslinked poly(1-vinyl-2-pyrrolidininone) as a vitreous substitute. J. Biomed. Mater. Res.30, 441–448 (1996).
  • Vijayasekaran S, Chirila TV, Hong Y et al. Poly(1-vinyl-2-pyrrolidinone) hydrogels as vitreous substitutes: histopathological evaluation in the animal eye. J. Biomater. Sci. Polymer Edn.7(8), 695–696 (1996).
  • Chirila TV, Hong Y. Poly(1-vinyl-2-pyrrolidinone) hydrogels as vitreous substitutes: a rheological study. Polym. Int.46, 183–195 (1998).
  • Refojo MF. Polymers in ophthalmic surgery. J. Biomed. Mater. Res.5, 113–119 (1971).
  • Daniele S, Refojo MF, Schepens CL, Freeman HM. Glyceryl methacrylate hydrogel as a vitreous implant. An experimental study. Arch. Ophthalmol.80(1), 120–127 (1968).
  • Hogen-Esch TE, Shah KR, Fitzgerald CR. Development of injectable poly(glyceryl methacrylate) hydrogels for vitreous prosthesis. J. Biomed. Mater. Res.10, 975–976 (1976).
  • Benlian W, Zhang J, Huibin W. The development of synthetic vitreous body and its experiment on rabbits. In: Polymers and Biomaterials. Feng H, Han Y, Huang L (Eds). Elsevier Science Publishers B.V., Amsterdam, The Netherlands 397–400 (1991).
  • Yamauchi A. Synthetic vitreous body of PVA hydrogel. In: Polymer Gels. Fundamentals and Biomedical Applications. DeRossi D, Kajiwara K, Osada Y, Yamauchi A (Eds). Plenum Press, NY, USA 127–134 (1991).
  • Maruoka S, Matsuura T, Kawasaki K et al. Biocompatibility of polyvinylalcohol gel as a vitreous substitute. Curr. Eye Res.31, 599–606 (2006).
  • Cavalieri F, Miano F, D’Antona P, Paradossi G. Study of gelling behavior of poly(vinyl alcohol)-methacrylate for potential utilizations in tissue replacement and drug delivery. Biomacromolecules5, 2439–2446 (2004).
  • Peyman GA, Conway MD, Karacorlu M et al. Evaluation of silicone gel as a long-term vitreous substitute in non-human primates. Ophthalmic Surg.23(12), 811–817 (1992).
  • Hamilton PD, Aliyar HA, Ravi N. Biocompatibility of thiol-containing polyacrylamide polymers suitable for ophthalmic applications. Polym. Prepr.45, 495–496 (2004).
  • Muller-Jensen K, Kohler H. An attempt to replace the vitreous body by polyacrylamide. Ber. Zusammenkunft. Dtsch Ophthalmol. Ges.68, 181–184 (1968).
  • Refojo MF, Zauberman H. Optical properties of gels designed for vitreous implantation. Invest. Ophthalmol.12, 465–467 (1973).
  • Aliyar HA, Foster WJ, Hamilton PD, Ravi N. Towards the development of an artificial human vitreous. Polym. Prepr.45, 469–470 (2004).
  • Foster WJ, Aliyar HA, Hamilton P, Ravi N. Internal osmotic pressure as a mechanism of retinal attachment in a vitreous substitute. J. Bioactive Compatible Polymers21, 221–235 (2006).
  • Swindle KE, Hamilton PD, Ravi N. Advancements in the development of artificial vitreous humor utilizing polyacrylamide copolymers with disulfide crosslinkers. Polym. Prepr.47, 59–60 (2006).
  • Swindle KE, Hamilton PD, Shui YB, Beebe DC, Ravi N. In situ formation of copolymeric hydrogels as vitreous substitutes. Presented at: Society for Biomaterials 2007 Annual Meeting Transactions. Chicago, IL, USA, April 17–21, 2007.
  • Refojo MF. Polymers and devices in ophthalmology. Proceedings of the 1995 Fourteenth Southern Biomedical Engineering Conference. Shreveport, LA, USA, April 7–9, 1995.
  • Peppas NA, Brannon-Peppas L. Hydrogels at critical conditions. Part 1. Thermodynamics and swelling behavior. J. Membr. Sci.48, 281–290 (1990).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.