762
Views
93
CrossRef citations to date
0
Altmetric
Theme: Brain/Neurologic - Review

Molecular mechanisms of temozolomide resistance in glioblastoma multiforme

&
Pages 635-642 | Published online: 10 Jan 2014
 

Abstract

Glioblastoma multiforme (GBM; WHO astrocytoma grade IV) is considered incurable owing to its inherently profound resistance towards current standards of therapy. Considerable effort is being devoted to identifying the molecular basis of temozolomide resistance in GBMs and exploring novel therapeutic regimens that may improve overall survival. Several independent DNA repair mechanisms that normally safeguard genome integrity can facilitate drug resistance and cancer cell survival by removing chemotherapy-induced DNA adducts. Furthermore, subpopulations of cancer stem-like cells have been implicated in the treatment resistance of several malignancies including GBMs. Thus, a growing number of molecular mechanisms contributing to temozolomide resistance are being uncovered in preclinical studies and, consequently, we are being presented with a broad range of potentially novel targets for therapy. A substantial future challenge is to successfully exploit the increasing molecular knowledge contributing to temozolomide resistance in robust clinical trials and to ultimately improve overall survival for GBM patients.

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.