829
Views
66
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Dry Matter Production, Translocation of Nonstructural Carbohydrates and Nitrogen Application on Grain Filling in Rice Cultivar Takanari, a Cultivar Bearing a Large Number of Spikelets

, , &
Pages 173-183 | Received 02 Feb 2000, Accepted 19 Mar 2001, Published online: 03 Dec 2015
 

Abstract

The effects of dry matter production and the remobilization of nonstructural carbohydrates (NSC) on grain filling were investigated using the Indica-based Japonica crossed rice cultivar Takanari, which can bear a large sink. For three years,beginning in 1994, shade treatments were conducted with different nitrogen applications to develop large variations in plant growth. The percentage of ripened spikelets showed the greatest correlation with the total amount of carbohydrate supply per spikelet during 10 to 20 days after heading, calculated by adding the amount of dry matter increase to the amount ofNSC decrease in leaf sheaths and culms during the period. Between the two components, the dry matter increase was more important. The NSC reserve played a role in compensating for the shortage of carbohydrate supply from assimilates after heading and showed a tendency to increase the percentage of ripened spikelets when dry matter production after heading was limited. However, the maximum ratio of compensatory translocation from the NSC reserve was estimated to be only 48%, becauseofsmaller reservoir size compared with the demand. The NSC reserve at heading was not significantly increased by increasing the dry matter production before heading. It was concluded that to increase grain filling ability it is more effective to increase the dry matter production after heading than that before heading. Nitrogen application showed negative effectson the translocation of reserve NSC. It is important to optimize the nitrogen content to maximize the total source of carbohydrate supply.