74
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Impact Analysis of miR-1253 on Lung Cancer Progression Through Targeted Regulation of ANXA3

, , , , , & show all
Pages 1767-1776 | Published online: 19 Feb 2021
 

Abstract

Objective

This study set out to investigate the effect of miR-1253 on lung cancer progression through targeted regulation of ANXA3.

Methods

RT-PCR was employed to detect the miR-1253 expression levels in lung cancer cells and its targeted gene ANXA3 mRNA determined by biological information prediction. MTT, invasion and apoptosis rate tests were employed to detect the proliferation, invasion and apoptosis rate of lung cancer cells over-expressing miR-1253 or those with low expression of ANXA3 and the expression of related proteins.

Results

RT-qPCR results manifested that the miR-1253 level was down-regulated in lung cancer tissues and cells, and the ANXA3 expression increased. The miR-1253 and ANXA3 expression levels were negatively correlated. miR-1253 was correlated with tumor differentiation degree, TNM stage and lymph node metastasis of lung cancer patients. Cell tests confirmed that miR-1253 played a tumor-inhibiting function, including inhibiting proliferation and invasion of lung cancer cells and promoting apoptosis. Bioinformatics prediction and subsequent experiments proved that ANXA3 was the direct target of miR-1253. Moreover, after the ANXA3 expression in lung cancer cells was knocked down, proliferation and invasion of those cells were inhibited dramatically, the apoptosis rate increased markedly, and the expression levels of pro-apoptosis-related proteins Bax and caspase-3 were up-regulated, and the anti-apoptosis-related protein Bcl-2 expression was down-regulated.

Conclusion

miR-1253 can inhibit the proliferation and invasion of lung cancer cells and promote their apoptosis by targeting ANXA3. It can be used as a new potential target for lung cancer treatment.

Acknowledgment

This work was supported by the General Program Fund of Haidian Section of Peking University Third Hospital (KYM2017015).

Disclosure

The authors report no conflicts of interest in this work.