362
Views
14
CrossRef citations to date
0
Altmetric
Review

Fourier Transform Infrared Spectroscopy: An Innovative Method for the Diagnosis of Ovarian Cancer

, , , , &
Pages 2389-2399 | Published online: 12 Mar 2021
 

Abstract

Ovarian cancer is the most lethal gynecologic malignancy due to the late diagnoses at advanced stages, drug resistance and the high recurrence rate. Thus, there is an urgent need to develop new techniques to diagnose and monitor ovarian cancer patients. Fourier transform infrared (FTIR) spectroscopy has great potential in the diagnosis of this disease, as well as the real-time monitoring of cancer development and chemoresistance. As a noninvasive, simple and convenient technique, it can not only distinguish the molecular differences between normal and malignant tissues, but also be used to identify the characteristics of different types of ovarian cancer. FTIR spectroscopy is also widely used in monitoring cancer cells in response to antitumor drugs, distinguishing cells in different growth states, and identifying new synthetic drugs. In this paper, the applications of FTIR spectroscopy for ovarian cancer diagnosis and other works carried out so far are described in detail.

Abbreviations

FTIR, Fourier Transform Infrared; PARP, poly(ADP-ribose) polymerase; CA-125, serum Cancer Antigen 125; MRI, Magnetic Resonance Imaging; CT, Computed Tomography; BRCA1/BRCA2, breast cancer susceptibility gene 1/2; ATR-FTIR, attenuated total reflection Fourier-transform infrared; SR-FTIR, synchrotron radiation-based FTIR spectroscopy; HD, high definition; UHD, ultra-high definition; HPV, human papillomavirus; MET, metformin; FFPE, formalin-fixed, paraffin-embedded.

Data Sharing Statement

All data generated or analyzed during this study are included in this article.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Disclosure

The authors have no conflicts of interest.