68
Views
12
CrossRef citations to date
0
Altmetric
Original Research

Role of inspiratory capacity on dyspnea evaluation in COPD with or without emphysematous lesions: a pilot study

, , , , &
Pages 2823-2830 | Published online: 30 Sep 2017
 

Abstract

Background

Since forced expiratory volume in 1 second (FEV1) shows a weak correlation with patients’ symptoms in COPD, some volume parameters may better reflect the change in dyspnea symptoms after treatment. In this article, we investigated the role of inspiratory capacity (IC) on dyspnea evaluation among COPD patients with or without emphysematous lesions.

Methods

In this prospective study, 124 patients with stable COPD were recruited. During the baseline visit, patients performed pulmonary function tests and dyspnea evaluation using the modified Medical Research Council (mMRC) scale. Partial patients underwent quantitative computerized tomography scans under physicians’ recommendations, and emphysematous changes were assessed using the emphysema index (EI; low attenuation area [LAA]% −950). These subjects were then divided into the emphysema-predominant group (LAA% −950≥9.9%) and the non-emphysema-predominant group (LAA% −950<9.9%). After treatment for ~1 month, subjects returned for reevaluation of both pulmonary function parameters and dyspnea severity. Correlation analysis between the change in IC (ΔIC) and dyspnea (ΔmMRC) was performed.

Results

Correlation analysis revealed that ΔIC was negatively correlated with ΔmMRC (correlation coefficient [cc], −0.490, P<0.001) in the total study population, which was stronger than that between ΔFEV1 and ΔmMRC (cc, −0.305, P=0.001). Patients with absolute ΔmMRC >1 were more likely to exhibit a marked increase in IC (≥300 mL) than those with absolute ΔmMRC ≤1 (74.36% versus 35.29%; odds ratio [OR], 5.317; P<0.001). In the emphysema-predominant group, only ΔIC strongly correlated with ΔmMRC (cc, −0.459, P=0.005), while ΔFEV1 did not (P>0.05).

Conclusion

IC could serve as an effective complement to FEV1 in COPD patients undergoing dyspnea evaluation after treatment. For COPD patients with predominant emphysematous lesions, an increase in IC is particularly more suitable for explaining dyspnea relief than FEV1.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No 81370148). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Disclosure

The authors report that no potential conflicts of interest exist with any companies or organizations whose products or services are discussed in this article.