131
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Which Balance Subcomponents Distinguish Between Fallers and Non-Fallers in People with COPD?

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1557-1564 | Published online: 01 Jul 2020
 

Abstract

Rationale

Chronic obstructive pulmonary disease (COPD) is an increasingly prevalent lung disease linked to dysfunctional balance and an increased risk of falls. The Balance Evaluation Systems Test (BESTest) evaluates the six underlying subcomponents of functional balance. The aim of this study was to determine the specific balance subcomponents and cut-off scores that discriminate between fallers and non-fallers with COPD to guide fall risk assessment and prevention.

Methods

A secondary analysis of cross-sectional data from two prior studies in COPD was performed. Independent samples t-tests were used to explore the differences in the BESTest sub-system scores between fallers and non-fallers. Receiver operating characteristic curves were used to determine the optimal subcomponent cut-off scores that identified fallers, and the area under the curve (AUC) was used to assess test accuracy.

Results

Data from 72 subjects with COPD (mean age, 70.3 ± 7.4y; mean forced expiratory volume in 1 second, 38.9 ± 15.8% predicted) were analyzed. Two BESTest subcomponents, stability limits/verticality (fallers: 75.4%, non-fallers: 83.8%; p=0.002) and postural responses (fallers: 67.5%, non-fallers: 79.7%; p=0.008) distinguished between fallers and non-fallers. Stability limits/verticality had an AUC of 0.70 and optimal cut-off score of 73.8% for identifying fallers; postural responses had an AUC of 0.67 and optimal cut-off score of 69.4%.

Conclusion

The stability limits/verticality and postural responses subcomponents of the BESTest distinguished between fallers and non-fallers with COPD. The stability limits/verticality subcomponent can also be used to identify whether an individual with COPD is at risk of falling using a cut-off score of 73.8%. These findings suggest that specific subcomponents of balance could be targeted to optimize fall risk assessment and prevention in COPD.

Acknowledgments

The authors thank the subjects who participated in this research and the respiratory program staff at West Park Healthcare Centre.

Disclosure

The authors report no conflicts of interest in this work.