108
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Loss of HNF1α Function Contributes to Hepatocyte Proliferation and Abnormal Cholesterol Metabolism via Downregulating miR-122: A Novel Mechanism of MODY3

, , &
Pages 627-639 | Published online: 02 Mar 2020
 

Abstract

Purpose

Mutations in hepatocyte nuclear factor 1α (HNF1α) are the cause of maturity-onset diabetes of the young type 3 (MODY3) and involved in the development of hepatocellular adenoma and abnormal lipid metabolism. Previously, we have found that the serum microRNA (miR)-122 levels in MODY3 patients were lower than those in type 2 diabetes mellitus and healthy controls. This study aimed to investigate the mechanism of decreased miR-122 levels in patients with MODY3 and whether low levels of miR-122 mediate tumorigenesis and abnormal lipid metabolism associated with HNF1α deficiency in human hepatocytes.

Methods

The expression of miR-122 was examined by real-time PCR. Dual-luciferase reporter assay was performed to confirm the transcriptional regulation of miR-122 by HNF1α. HepG2 cells were transfected with siRNA or miRNA mimic to downregulate or upregulate the expression of HNF1α or miR-122, respectively. CCK-8 and colony formation assay were used to determine cell proliferation. Lipid accumulation was examined by Oil Red O staining and intracellular triglyceride and cholesterol quantification assays.

Results

HNF1α regulated the expression of miR-122 by directly binding to its promoter. Knockdown of HNF1α in HepG2 cells reduced the expression of miR-122, increased proliferation and promoted intracellular cholesterol accumulation. Overexpression of miR-122 partially rescued the phenotypes associated with HNF1α deficiency in human hepatocytes. Mechanistically, HNF1α modulated cholesterol homeostasis via miR-122-dependent activation of sterol regulatory element-binding protein-2 (SREBP-2) and regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9). Moreover, circulating miR-122 levels were associated with serum cholesterol levels.

Conclusion

Loss of HNF1α function led to hepatocyte proliferation and abnormal cholesterol metabolism by downregulating miR-122. Our findings revealed a novel mechanism that low levels of miR-122 mediate tumorigenesis and abnormal lipid metabolism associated with MODY3. MiR-122 may be a potential therapeutic target for the treatment of MODY3.

Acknowledgments

This study was funded by National Key Research and Development Program (2016YFC1304901), Beijing Science and Technology Committee Funding (Z141100007414002 and D131100005313008), and the National High-Technology Research and Development Program of China (863 Program 2012AA02A509).

Disclosure

The authors report no conflicts of interest in this work.