133
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Effect of Saxagliptin, a Dipeptidyl Peptidase 4 Inhibitor, on Non-Alcoholic Fatty Liver Disease

, ORCID Icon, &
Pages 3507-3518 | Published online: 06 Oct 2020
 

Abstract

Background and Aim

Non-alcoholic fatty liver disease (NAFLD) represents a broad spectrum of chronic liver disease characterized by aberrant accumulation of triglycerides (TG) in hepatocytes without excessive alcohol consumption. Hepatic lipotoxicity derived from overaccumulation of free fatty acids is considered as one of the typical hallmarks of NAFLD. Insulin resistance (IR) and chronic inflammation are widely recognized as the key etiological factors associated with NAFLD. Dipeptidyl peptidase 4 inhibitor (DPP4i) is a novel pharmacological agent extensively applied in the treatment of Type 2 Diabetes Mellitus (T2DM) for decades which also have a liver protective effect.

Methods

In order to invest the therapeutic efficiency and underlying mechanism of DPP4i saxagliptin, we used high-fat diet (HFD) and streptozotocin-induced NAFLD treated with saxagliptin. Biochemical, histomorphological, genetic and protein expression of related pathways were investigated.

Results

Fasting blood glucose (FBG), TG, total cholesterol (TC), and low-density lipoprotein cholesterin significantly increased in NAFLD group, which also exhibited severe steatosis. Other remarkable findings were hyperinsulinemia, increased DPP4, PTP-1B and TNF-α level and decreased GLP-1, ACOX-1, CPT-1A expression, concomitant with liver DPP4 expression enhancement and serum DPP4 elevation. These undesirable consequences were alleviated by saxagliptin to a certain degree.

Conclusion

DPP4i saxagliptin improves NAFLD by ameliorating IR, inflammation, downregulation of hepatic DPP4 and sDPP4, as well as subsequent steatosis. The elevation of hepatic DPP4 and sDPP4 and succedent post-treatment decrease suggested that DPP4 may involve in the development of NAFLD. The anti-lipotoxic effect of DPP4i may involve the activation of CPT1A and ACOX1 related β-oxidation signaling pathway suppression of TNF-α mediated inflammatory and PTP-1B. The results covered in this article showed that saxagliptin affects many aspects of the pathological characteristics of NAFLD, suggesting that DPP4i saxagliptin may offer a novel therapeutic option for NAFLD.

Acknowledgments

The authors have no ethical conflicts to disclose.

Disclosure

None of the authors have potential conflicts of interest associated with this research.

Additional information

Funding

This research was funded by grants from the Key Research and Development Plan of Shandong Province (2017G006006 and 2016GSF201016) and National Natural Science Foundation of China (81000325 and 81970700).