166
Views
14
CrossRef citations to date
0
Altmetric
Original Research

Assessment of sputum smear-positive but culture-negative results among newly diagnosed pulmonary tuberculosis patients in Tanzania

, , , , , & show all
Pages 199-205 | Published online: 12 Jul 2017
 

Abstract

Diagnosis of pulmonary tuberculosis (TB) in technology-limited countries is widely achieved by smear microscopy, which has limited sensitivity and specificity. The frequency and clinical implication of smear-positive but culture-negative among presumptive TB patients remains unclear. A cross-sectional substudy was conducted which aimed to identify the proportion of nontuberculous mycobacteria (NTM) infections among 94 “smear-positive culture-negative” patients diagnosed between January 2013 and June 2016 in selected health facilities in Tanzania. Out of 94 sputa, 25 (26.60%) were GeneXpert® mycobacteria TB positive and 11/94 (11.70%) repeat-culture positive; 5 were Capilia TB-Neo positive and confirmed by GenoType MTBC to be Mycobacterium tuberculosis/Mycobacterium canettii. The remaining 6 Capilia TB-Neo negative samples were genotyped by GenoType® CM/AS, identifying 3 (3.19%) NTM, 2 Gram positive bacteria, and 1 isolate testing negative, together, making a total of 6/94 (6.38%) confirmed false smear-positives. Twenty-eight (29.79%) were confirmed TB cases, while 60 (63.83%) remained unconfirmed cases. Out of 6 (6.38%) patients who were HIV positive, 2 patients were possibly coinfected with mycobacteria. The isolation of NTM and other bacteria among smear-positive culture-negative samples and the presence of over two third of unconfirmed TB cases emphasize the need of both advanced differential TB diagnostic techniques and good clinical laboratory practices to avoid unnecessary administration of anti-TB drugs.

Acknowledgments

This work was mainly supported by the EAPHLN project, which was appraised in February 2010 and implemented regionally within the East African countries with a soft loan from the World Bank. This work was partly supported by the DELTAS Africa Initiative [Afrique One-ASPIRE/DEL-15-008]. Afrique One-ASPIRE is funded by a consortium of donors including the African Academy of Sciences (AAS), Alliance for Accelerating Excellence in Science in Africa (AESA), the New Partnership for Africa’s Development Planning and Coordinating (NEPAD) Agency, the Wellcome Trust [107753/A/15/Z], and the UK government. The authors extend sincere thanks to the Nelson Mandela African Institution of Science and Technology for providing adequate learning resources and invaluable support and to the management of the CTRL where this piece of work was carried out. The views expressed in this publication are those of the authors and not necessarily those of Afrique One-ASPIRE or the World Bank.

Disclosure

The authors report no conflicts of interest in this work.