84
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Culture of dental pulp stem cells on nanoporous alumina substrates modified by carbon nanotubes

, , , , , & show all
Pages 1907-1918 | Published online: 14 Mar 2019
 

Abstract

Purpose

Alumina substrates are one of the commonly used scaffolds applied in cell culture, but in order to prevent formation of biofilm on the alumina substrate, these substrates are modified with carbon nanotube.

Methods

The alumina substrate was made by a two-step anodization method and was then modified with carbon nanotubes by simple chemical reaction. The substrates were characterized with FTIR, SEM, EDX, 3D laser scanning digital microscope, contact angle (CA) and surface free energy (SFE). To determine how this modification influences the reduction of biofilm, biofilm of two various bacteria, Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus), were investigated.

Results

The biofilm on the modified substrate decreased due to the presence of carbon nanotubes and increased antibacterial properties. Dental pulp stem cells (DPSCs) were cultured onto flat alumina (FA) and nanoporous alumina-multiwalled carbon nanotubes (NAMC) substrates to examine how the chemical modification and surface topography affects growth of DPSCs.

Conclusion

Cell attachment and proliferation were investigated with SEM and Presto Blue assay, and the findings show that the NAMC substrates are suitable for cell culture.

Supplementary material

Table S1 Parameters of acid-base Van Oss method

Acknowledgments

Our research group appreciates all those who collaborated with us in this project.

Disclosure

The authors report no conflicts of interest in this work.