306
Views
40
CrossRef citations to date
0
Altmetric
Review

Hypoxia-active nanoparticles used in tumor theranostic

, , , &
Pages 3705-3722 | Published online: 22 May 2019
 

Abstract

Hypoxia is a hallmark of malignant tumors and often correlates with increasing tumor aggressiveness and poor treatment outcomes. Therefore, early diagnosis and effective killing of hypoxic tumor cells are crucial for successful tumor control. There has been a surge of interdisciplinary research aimed at developing functional molecules and nanomaterials that can be used to noninvasively image and efficiently treat hypoxic tumors. These mainly include hypoxia-active nanoparticles, anti-hypoxia agents, and agents that target biomarkers of tumor hypoxia. Hypoxia-active nanoparticles have been intensively investigated and have demonstrated advanced effects on targeting tumor hypoxia. In this review, we present an overview of the reports published to date on hypoxia-activated prodrugs and their nanoparticle forms used in tumor-targeted therapy. Hypoxia-responsive nanoparticles are inactive during blood circulation and normal physiological conditions but are activated by hypoxia once they extravasate into the hypoxic tumor microenvironment. Their use can enhance the efficiency of tumor chemotherapy, radiotherapy, fluorescence and photoacoustic intensity, and other imaging and therapeutic strategies. By targeting the broad habitats of tumors, rather than tumor-specific receptors, this strategy has the potential to overcome the problem of tumor heterogeneity and could be used to design diagnostic and therapeutic nanoparticles for a broad range of solid tumors.

Acknowledgments

This work was supported by National Key R&D Program of China Grant under No.2017YFA0205200, 2018YFC0115500, The National Natural Science Foundation of China grant number [81630053], National Key R&D Program of China Grant under No. 2017YFA0700401, and The National Natural Science Foundation of China grant number [81227901, 81527805, 81501540, 61231004].

Disclosure

The authors report no conflicts of interest in this work.