301
Views
18
CrossRef citations to date
0
Altmetric
Original Research

Synthesis and preliminary characterization of polyurethane nanoparticles with ginger extract as a possible cardiovascular protector

, , , , , & show all
Pages 3691-3703 | Published online: 21 May 2019
 

Abstract

Background and aim:

The extract of ginger, obtained from the rhizome of Zingiber officinale, contains 6-gingerol, 6-shogaol, 8-gingerol, and 10-gingerol. It has many therapeutic effects such as being chemopreventive against stroke and heart diseases, malabsorption, bacterial infections, indigestion, and nausea, which have been observed since ancient times. The main aim of this study is to evaluate the polyurethane (PU) as a proper material for the hollow nanoparticles’ preparation.

Methods:

The PU nanoparticles were obtained by a spontaneous emulsification, in the presence of a nonionic surfactant, combined with an interfacial polyaddition process between an aliphatic diisocyanate and different mixtures of etheric and esteric polyols. The synthesis was done without any PU additives, such as catalysts, blowing agents, chains promoters, cross-linking agents, and stabilizers.

Results:

The particles present almost neutral pH values and low water solubility. They are heat resistant up to 280°C. Decreased irritation level was found in the assay of PU nanoparticles loaded with pure ginger extract (GE) on the murine skin tests than the irritation level recorded for pure GE.

Conclusion:

This research shows the reduced noxiousness of these PU nanoparticles and consequently the possibility of their use as a possible cardiovascular protector.

Acknowledgments

MALDI-TOF analysis was done in the Center of Genomic Medicine of “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania (POSCCE [Programul Operational Sectorial Cresterea Competitivitatii Economice (Sectoral Operational Program for the Increasing of Economic Competitiveness) Project ID: 1854, code SMIS [Sistemul Unic de Management al Informației pentru Instrumentele Structurale (Unique Information Management System for Structural Instruments): 48749, “Center of Genomic Medicine v2”, contract 677/09.04.2015).

Disclosure

The authors report no conflicts of interest in this work.