253
Views
29
CrossRef citations to date
0
Altmetric
Original Research

The Optimization Design Of Lactoferrin Loaded HupA Nanoemulsion For Targeted Drug Transport Via Intranasal Route

, , , , ORCID Icon &
Pages 9217-9234 | Published online: 27 Nov 2019
 

Abstract

Background

Huperzine A (HupA) is a selective acetylcholinesterase inhibitor used to treat Alzheimer’s disease. The existing dosage of HupA lacks brain selectivity and can cause serious side effects in the gastrointestinal and peripheral cholinergic systems.

Purpose

The aim of this study was to develop and characterize a HupA nanoemulsion (NE) and a targeted HupA-NE modified with lactoferrin (Lf) for intranasal administration.

Methods

The NE was formulated using pseudo-ternary phase diagrams and optimized with response surface methodology. Particle size distribution and zeta potential were evaluated, and transmission electron microscopy was performed. We investigated the transport mechanisms of HupA-NEs into hCMEC/D3 cells, an in vitro model of the blood-brain barrier. HupA-NE, Lf-HupA-NE, and HupA solution were intranasally administered to rats to investigate the brain-targeting effects of these formulations. A drug targeting index (DTI) was calculated to determine brain-targeting efficiency.

Results

Optimized HupA-NE had a particle size of 15.24±0.67 nm, polydispersity index (PDI) of 0.128±0.025, and zeta potential of −4.48±0.97 mV. The composition of the optimized HupA-NE was 3.00% isopropyl myristate (IPM), 3.81% Capryol 90, and 40% Cremophor EL + Labrasol. NEs, particularly Lf-HupA-NE, were taken up into hCMEC/D3 cells to a greater extent than pure drug alone. Western blot analysis showed that hCMEC/D3 cells contained P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance associated protein 1 (MRP1) transporters. The likely mechanisms resulting in higher NE transport to the brain were uptake by specific transporters and transcytosis. In vivo, intranasal Lf-HupA-NE significantly enhanced drug delivery to the brain compared to HupA-NE, which was confirmed by differences in pharmacokinetic parameters. The DTI of Lf-HupA-NE (3.2±0.75) demonstrated brain targeting, and the area under the curve for Lf-HupA-NE was significantly higher than that for HupA-NE.

Conclusion

Lf-HupA-NE is a promising nasal drug delivery carrier for facilitating delivery of HupA to the central nervous system.

Video abstract

Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use:

https://youtu.be/EpqKwDyguVs

Acknowledgments

This work was supported by the Ministry of Science and Technology of Jilin Province, China (201603048YY). We thank Prof. Wei Wu and Dr Liwei Zhao at School of Pharmacy, Fudan University for providing probes.

Disclosure

The authors report no conflicts of interest in this work.