959
Views
9
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Screening of Antioxidant, Antibacterial, Anti-Adipogenic, and Anti-Inflammatory Activities of Five Selected Medicinal Plants of Nepal

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 93-106 | Received 12 Sep 2022, Accepted 11 Jan 2023, Published online: 02 Mar 2023
 

Abstract

Introduction

Herbal products have been widely used for the treatment of diseases throughout the ages. In this research, we investigated antioxidant, antibacterial, anti-adipogenic, and anti-inflammatory activities of methanolic extracts of five ethnomedicinally important plants; namely, Alnus nepalensis, Dryopteris sparsa, Artocarpus lacucha, Litsea monopetala, and Lyonia ovalifolia.

Methods

We investigated the DPPH free radical scavenging potential, sensitivity of selected bacterial strains towards the extracts using a disc diffusion assay, anti-inflammatory activity in RAW-264.7 cells, and anti-adipogenic activity by the ORO assay in 3T3-L1 preadipocytes.

Results and discussion

The extract of A. nepalensis showed significant antioxidant activity (IC50=4.838 µg/mL), followed by A. lacucha, L. monopetala, and L. ovalifolia, exhibiting comparable IC50 values to that of ascorbic acid (IC50=5.063 µg/mL). Alnus nepalensis also showed good antibacterial activity in disc diffusion methods, with remarkable zones of inhibition in A. baumannii (14.66 mm) and P. mirabilis (15.50 mm) bacterial species. In addition, A. nepalensis was found to increase adipogenesis in 3T3-L1 cells, evidenced by increased lipid deposition in differentiated 3T3-L1 cells. A similar pattern of increased adipogenesis was observed on treatment with L. ovalifolia extracts. On the other hand, A. lacucha effectively reduced lipid deposition in 3T3-L1 cells at 100 µg/mL (75.18±6.42%) by inhibiting adipogenesis, showing its potential use in the management of obesity. Furthermore, A. lacucha 100 µg/mL (15.91±0.277 µM) and L. monopetala 75 µg/mL (12.52±0.05 µM) and 100 µg/mL (11.77±0.33 µM) significantly inhibited LPS-induced nitric oxide production in RAW 264.7 cells. Also, A. nepalensis and L. ovalifolia inhibited NO production significantly, endorsing their anti-inflammatory potential.

Conclusion

The findings from these in-vitro studies suggest that the selected five plants possess remarkable antioxidant, antibacterial, anti-adipogenic, and anti-inflammatory activities. This study opens the door to conduct further advanced in-vivo experiments to find possible lead compounds for the development of valuable therapeutic agents for common health problems.

Acknowledgments

This paper was suported by Wonkwang University in (2021) and Pokhara University. We would like to acknowledge Pokhara University, School of Health and Allied Sciences, Nepal, and Wonkwang University (2021), Department of Oriental Pharmacy, Republic of Korea, for providing research facilities for conducting this research.

Author Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Disclosure

The authors report no conflicts of interest in this work.