307
Views
25
CrossRef citations to date
0
Altmetric
Review

Clinical relevance of paliperidone palmitate 3-monthly in treating schizophrenia

, , , , , , , & show all
Pages 1365-1379 | Published online: 21 May 2019
 

Abstract

Antipsychotics are the mainstay in schizophrenia management, and long-acting injectable (LAI) antipsychotics contribute to the successful maintenance of treatment by improving non-adherence and preventing relapses. Paliperidone palmitate 3-monthly (PP3M) formulation is the only available LAI antipsychotic that offers an extended 3-month window of stable plasma drug concentration, enabling only four injections per year. This paper summarizes clinically relevant endpoints from available evidence for PP3M to bridge translational research gaps and provide measurable outcomes that can be interpreted in clinical practice. Low number-needed-to-treat (NNT) for relapse prevention (NNT [95% CI] 6-month estimate: 4.8 [3.2; 10.0]; 12-month estimate: 3.4 [2.2; 7.0]), and high number-needed-to-harm (NNH [95% CI] akathisia, 27.1 [12.3; −667.1]; tremor, 80.0 [22.5; 67.3]; dyskinesia, −132.6 [44.5; −23.2]; parkinsonism, 160.0 [28.9; −49.8]) quantify the relative benefits and low propensity for adverse events with PP3M. Symptom remission and reductions in positive and negative symptoms indicate treatment stability. Additionally, meaningful functional remission, reduced dosing frequency, and freedom from daily negotiations favorably impact patient preference and attenuate burdensome aspects of caregiving, representing important healthcare determinants that enhance prospects of treatment continuity in schizophrenia. This information can potentially improve clinicians’ judgment of treatment choices, clinical response, and patient selection in routine care. Taken together, PP3M is a valuable antipsychotic treatment option, meriting consideration for a broader role in the long-term management of schizophrenia; its utility should not be limited to patients with poor adherence or when oral antipsychotics have failed.

Acknowledgments

The authors thank Priya Ganpathy, MPharm, ISMPP CMPP™ (SIRO Clinpharm Pvt. Ltd, India) for writing assistance, and Ellen Baum, PhD (Janssen Global Services, LLC) for additional editorial assistance. The development of this review article was supported by funding from Janssen Research & Development, LLC.

Author contributions

MM and AJS were responsible for initial conceptualization of the scope, focus, analysis, and interpretation. LH, EK, WT, BS, SG, and CUC were responsible for analysis and interpretation. IN was the statistician and conducted and directed data analysis and interpretation. All authors contributed to data analysis, drafting or revising the article, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Disclosure

MM, SG, IN, and AJS are employees and shareholders of Janssen Research & Development, LLC, USA (parent company Johnson and Johnson). LH is an employee and shareholder of Janssen-Cilag EMEA, Neuss, Deutschland. EK is an employee of Janssen Scientific Affairs, LLC, USA. WT is an employee and shareholder of Janssen Pharmaceutical Companies of Johnson and Johnson, Singapore. BS is an employee and shareholder of Jan-Cil, Brazil. CUC has been a consultant and/or advisor to or has received honoraria from: Alkermes, Allergan, Angelini, Boehringer-Ingelheim, Gerson Lehrman Group, Indivior, Intra-Cellular Therapies, Janssen/J&J, LB Pharma, Lundbeck, Medavante-ProPhase, Medscape, Merck, Neurocrine, Noven, Otsuka, Pfizer, Rovi, Servier, Sunovion, Takeda, and Teva. He has provided expert testimony for Bristol-Myers Squibb, Janssen, and Otsuka. He also served on a Data Safety Monitoring Board for Lundbeck, Rovi, and Teva. He received royalties from UpToDate® and grant support from Janssen and Takeda. The authors report no other conflicts of interest in this work.