79
Views
2
CrossRef citations to date
0
Altmetric
Case Report

A case of gait disturbance caused by low-dose gabapentin

, , &
Pages 927-929 | Published online: 09 Jun 2016

Abstract

Gabapentin, an anticonvulsant agent, is now often used for the treatment of neuropathic pain all over the world. It is unclear whether the combined use of gabapentin, sodium valproate, and flunitrazepam results in enhancement of the side effect, a gait disturbance. A 60-year-old man was taking oral sodium valproate for symptomatic epilepsy after a brain contusion and flunitrazepam to relieve insomnia. Oral gabapentin therapy was started for suspected neuropathic pain. Although the initial dose of oral gabapentin (200 mg) relieved the pain, the lower extremities became weak, resulting in a gait disturbance. The therapy was restarted with a halved dose, and this resolved the gait disturbance and relieved the pain.

Introduction

Gabapentin is an antiepileptic drug that likely exerts its effects through selective interactions with the α2 δ subunit of voltage-dependent calcium channels.Citation1 Gabapentin provides effective relief from chronic pain states, such as diabetic neuropathy,Citation2 postherpetic neuralgia, and other neuropathic pain states.Citation3,Citation4 The major side effects of this analgesic agent include drowsiness, dizziness, and headache.

Gabapentin displays dose-dependent, saturable absorption. The mechanism underlying the absorption pattern is believed to include an active transport process. Combined use of gabapentin with other antiepileptic drugs generally results in synergistic interactions in animal studies.Citation5 Whether the combined use of low-dose gabapentin, sodium valproate, and flunitrazepam results in enhancement of the side effects, especially gait disturbances, however, is unknown.

Gait disturbance is a rare side effect of gabapentin, especially at low doses. Gait disturbances occurring during the administration of gabapentin and other antiepileptic drugs have not been reported. We report a case of gait disturbance caused by the combined use of low-dose gabapentin administered for neuropathic pain in the right lower extremity with sodium valproate and flunitrazepam.

Case report

A 60-year-old man was taking oral sodium valproate (1,200 mg/d) that was prescribed to treat muscle weakness, mild pain, paralysis in the upper and lower extremities, and symptomatic epilepsy after a brain contusion caused by a traffic accident 30 years ago. Written informed consent was obtained from the patient. The Asahikawa Medical University ethics committee did not require ethical approval as the medications in the present case were not interventional. The serum concentration of sodium valproate was 29.06 μg/mL. Oral flunitrazepam was administered before bedtime to relieve insomnia. He was not taking any other medications.

He had worsening pain in the right lower extremity for 4 months and was referred to the neurosurgery department of our hospital. The initial examination confirmed muscle weakness in the upper and lower extremities, but both movement and sensation were preserved. Deep tendon reflexes were also normal. Oral gabapentin therapy (400 mg/d; twice daily, 200 mg in the morning and 200 mg in the late afternoon) was started for suspected neuropathic pain.

Although the initial dose of oral gabapentin (200 mg) relieved the pain, the lower extremities became weak, resulting in a gait disturbance. The patient ceased gabapentin therapy, which rapidly alleviated the gait disturbance. Readministration of gabapentin (200 mg) after 4 days caused a gait disturbance, prompting the patient to visit our emergency outpatient unit. His only complaint was gait disturbance due to weakness of the lower extremities. Obvious weakness of the upper extremities, motor impairment, respiratory depression, headache, and dizziness were absent. Oral gabapentin therapy was temporarily ceased, as it was the most likely cause of the gait disturbance. The therapy was restarted with a halved dose (200 mg/d; twice daily, 100 mg in the morning and 100 mg late afternoon), and this resolved the gait disturbance and relieved the pain. Pain relief without a gait disturbance has been achieved by lower dose therapy with oral gabapentin (200 mg/d). The oral administration of sodium valproate was also continued for a period of pain relief therapy. The time frame of patient background and therapeutic process is given in .

Table 1 Time frame of patient background and therapeutic process

Discussion

The major side effects of gabapentin are drowsiness, dizziness, peripheral edema, vomiting, nausea, and headache. Moore et alCitation6 reported that gait disturbances occur in 8.8% of neuropathic pain patients on gabapentin at doses of ≥1,200 mg daily.Citation7 In this case, a dose of only 200 mg of gabapentin caused gait disturbances in a patient with neuropathic pain in the right lower extremity. To our knowledge, gait disturbances are a very rare adverse effect of low-dose gabapentin.

Gabapentin has additive effects when administered in combination with certain classical anticonvulsants, including diazepam and valproate.Citation8,Citation9 Borowicz et alCitation5 reported that gabapentin appears to act synergistically with anticonvulsants, including valproate, based on isobolographic analysis. Several studies report that combined use of gabapentin and benzodiazepine enhances the effects of medications used to treat alcoholism.Citation10Citation12 Based on the abovementioned reports, in the present case, the effects of low-dose gabapentin were enhanced by sodium valproate and flunitrazepam, leading to gait disturbances, despite the low dose of gabapentin. Hepner and ClaxtonCitation13 warned that combined use of gabapentin and anticonvulsants for pain therapy could worsen the side effects of these drugs.

Gabapentin is not metabolized, is not bound to plasma proteins, and is entirely excreted unchanged through the kidney. The elimination half-life is 5–7 hours in healthy subjects. Gidal et alCitation14 reported that the bioavailability of oral gabapentin is 49%, but this may vary greatly among subjects (5%–74%). Johannessen Landmark et alCitation15 reported that the concentration/dose ratio is higher in elderly people than in younger patients and a large number of patients (87%) have serum concentrations below the lower limit of the proposed reference range. In other words, the clinical recommended dose of gabapentin is likely to result in quite different plasma concentrations among patients. In this present case, the serum concentration of gabapentin may have been much higher than the expected concentration. This could be the reason for the gait disturbance despite the recommended low initial dose of gabapentin.

As mentioned earlier, the optimum gabapentin dose for pain relief varies among individuals. Therefore, it is likely that the recommended initial dose was excessive for this particular patient. Scheschonka and BeucheCitation16 reported similar aggravation of muscle weakness after several days of gabapentin therapy and the condition was resolved after withholding therapy in a female myasthenia gravis patient with neuropathic pain caused by herpes zoster. The patient in the present case had existing muscle weakness in the upper and lower extremities due to a brain contusion, suggesting that the muscle-weakening effect of gabapentin may be prominent in patients with underlying diseases that cause muscle weakening. The underlying diseases in individual patients should be considered when determining gabapentin doses.

The gait disturbance demonstrated in this case was a rare complication of gabapentin therapy, and the detailed mechanism remains unclear. The dose and dosing instructions of gabapentin should be individualized for each patient to ensure safe and effective treatment of neuropathic pain, especially when used in combination with other anticonvulsants.

Disclosure

The authors report no conflicts of interest in this work.

References

  • FieldMJHughesJSinghLFurther evidence for the role of the alpha(2)delta subunit of voltage dependent calcium channels in models of neuropathic painBr J Pharmacol2000131228228610991921
  • BackonjaMBeydounAEdwardsKRGabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trialJAMA199828021183118369846777
  • RowbothamMHardenNStaceyBBernsteinPMagnus-MillerLGabapentin for the treatment of postherpetic neuralgia: a randomized controlled trialJAMA199828021183718429846778
  • HahnKArendtGBraunJSA placebo-controlled trial of gabapentin for painful HIV-associated sensory neuropathiesJ Neurol2004251101260126615503108
  • BorowiczKKSwiaderMLuszczkiJCzuczwarSJEffect of gabapentin on the anticonvulsant activity of antiepileptic drugs against electroconvulsions in mice: an isobolographic analysisEpilepsia200243995696312199720
  • MooreRAWiffenPJDerrySMcQuayHJGabapentin for chronic neuropathic pain and fibromyalgia in adultsCochrane Database Syst Rev2014274CD00793824771480
  • MikkelsenSHilstedKLAndersenPJThe effect of gabapentin on post-operative pain following tonsillectomy in adultsActa Anaesthesiol Scand200650780981516879463
  • De SarroGSpagnoloCGareriPGallelliLDe SarroAGabapentin potentiates the antiseizure activity of certain anticonvulsants in DBA/2 miceEur J Pharmacol19983492–31791859671096
  • MatsumuraNNakakiTIsobolographic analysis of the mechanisms of action of anticonvulsants from a combination effectEur J Pharmacol201474123724625149665
  • HammondCJNiciuMJDrewSAriasAJAnticonvulsants for the treatment of alcohol withdrawal syndrome and alcohol use disordersCNS Drugs201529429331125895020
  • CaputoFBernardiMMedications acting on the GABA system in the treatment of alcoholic patientsCurr Pharm Des201016192118212520482512
  • AntonRFMyrickHBarosAMEfficacy of a combination of flumazenil and gabapentin in the treatment of alcohol dependence: relationship to alcohol withdrawal symptomsJ Clin Psychopharmacol200929433434219593171
  • HepnerSClaxtonRAnti-epileptic drugs for pain #271J Palliat Med201316779980023672271
  • GidalBERadulovicLLKrugerSRuteckiPPitterleMBockbraderHNInter- and intra-subject variability in gabapentin absorption and absolute bioavailabilityEpilepsy Res2000402–312312710863139
  • Johannessen LandmarkCBeiskeGBaftiuABurnsMLJohannessenSIExperience from therapeutic drug monitoring and gender aspects of gabapentin and pregabalin in clinical practiceSeizure201528889125758302
  • ScheschonkaABeucheWTreatment of post-herpetic pain in myasthenia gravis: exacerbation of weakness due to gabapentinPain20031041–242342412855353