88
Views
0
CrossRef citations to date
0
Altmetric
Review

Future of RNAi-Based Therapies for Human Papillomavirus-Associated Cervical Cancer

, , &
Pages 587-595 | Published online: 31 Oct 2007
 

Abstract

Over 99% of cervical cancers are associated with infection of high-risk type human papillomaviruses (HPV). These viruses infect epithelial cells lining the cervix and express the early viral genes E6 and E7, which are oncogenes and are primarily responsible for the transformation of the epithelial cells. The continuous expression of those genes is essential for maintenance of the cancer cell phenotype and viability. These viral genes can be silenced using oligonucleotide-based techniques, for example RNAi, antisense RNA and ribozymes. In spite of promising results in vitro and in vivo, in mice, these methods have thus far proved unsuccessful in humans, owing to the lack of an effective delivery system amongst other limitations. In this review we will discuss potential gene-silencing strategies in cervical cancer that would target both viral genes such as E6 and E7, and cellular genes that become deregulated such as E2F, p53, Akt, mTor, NF-κB or Bcl-2. By investigating these approaches we may generate an effective treatment for HPV-induced cervical cancer using gene silencing.

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.