392
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Investigating sitosterolemia to understand lipid physiology

&
Pages 649-658 | Published online: 18 Jan 2017
 

Abstract

The cholesterol molecule is at the center of the pathophysiology of many vascular diseases. Whole-body cholesterol pools are maintained by a balance of endogenous synthesis, dietary absorption and elimination from our bodies. While the cellular aspects of cholesterol metabolism received significant impetus from the seminal work of Goldstein and Brown investigating LDL receptor trafficking, how dietary cholesterol was absorbed and eliminated was relatively neglected. The identification of the molecular defect of a rare human disorder, sitosterolemia, led to elucidation of a key mechanism of how we regulate the excretory pathway in the liver and intestine. Two proteins, ABCG5 and ABCG8, constitute a heterodimeric transporter that facilitates the extrusion of sterols from the cell into the biliary lumen, with a preference for xenosterols. This mechanism explains how dietary xenosterols are prevented from accumulating in our bodies. In addition, this disease has also highlighted the potential harm of xenosterols; macrothrombocytopenia, liver disease and endocrine disruption are seen when xenosterols accumulate. Mouse models of this disease suggest that there are more dramatic alterations of physiology, suggesting that these highly conserved mechanisms have evolved to prevent these xenosterols from accumulating in our bodies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.