161
Views
0
CrossRef citations to date
0
Altmetric
Review

MicroRNA dysregulation during chemical carcinogenesis

Pages 281-290 | Published online: 03 Dec 2009
 

Abstract

MicroRNAs, potent negative modulators of gene expression, are involved in the regulation of fundamental cellular processes, including cell differentiation, metabolic regulation, signal transduction, cell proliferation and apoptosis. Aberrant levels of miRNAs have been documented in all major human cancers, leading to the suggestion that deregulation of miRNA expression might be significant in tumorigenesis. This review presents the current evidence that demonstrates the involvement of miRNA deregulation in the early stages of lung, liver and breast carcinogenesis induced by chemical carcinogens, suggesting their major role as contributors to the pathogenesis of cancer.

Author note

The views presented in this paper do not necessarily represent those of the US FDA.

Financial & competing interests disclosure

The author has no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.