400
Views
0
CrossRef citations to date
0
Altmetric
Preliminary Communication

Epigenetically Reprogramming Metastatic Tumor Cells With An Embryonic Microenvironment

, , , , , , , & show all
Pages 387-398 | Published online: 03 Dec 2009
 

Abstract

We have previously shown that the microenvironment of human embryonic stem cells (hESCs) is able to change and reprogram aggressive cancer cells to a less aggressive state. Some mechanisms implicated in the phenotypic changes observed after this exposure are mainly associated with the Nodal signaling pathway, which plays a key role in tumor cell plasticity. However, several other molecular mechanisms might be related directly and/or indirectly to these changes, including microRNA (miRNA) regulation and DNA methylation. Aim: To further explore the epigenetic mechanisms potentially underlying the phenotypic changes that occur after exposing metastatic melanoma cells to a hESC microenvironment. Materials & Methods: A total of 365 miRNAs were screened using the TaqMan® Low Density Arrays. We also evaluated whether DNA methylation could be one of the factors regulating the expression of the inhibitor of Nodal, Lefty, in hESCs (where it is highly expressed) vs melanoma cells (where it is not expressed). Results: Using these experimental approaches, we identified miRNAs that are up- and down-regulated in melanoma cells exposed to a hESC microenvironment, such as miR-302a and miR-27b, respectively. We also demonstrate that Notch4 is one of the targets of miR-302a, which is upstream of Nodal. Additionally, one of the mechanisms that might explain the absence of the inhibitor of Nodal, Lefty, in cancer cells is silencing by DNA methylation, which provides new insights into the unregulated expression of Nodal in melanoma. Conclusion: These findings suggest that epigenetic changes such as DNA methylation and regulation by microRNAs might play a significant role in tumor cell plasticity and the metastatic phenotype.

Acknowledgements

We thank Victor Ambros and Molly Hammell for helping with the RNAhybrid software analysis. We also thank Elio F Vanin, Christina Smith and Selva Musa for technical assistance and Joana Heinzelmann for critically reading this manuscript.

Financial & competing interests disclosure

This work is supported by NIH grants CA59702 and CA121205 (MJCH), the Eisenberg Scholar Research Fund (LS) and the Maeve McNicholas Memorial Foundation (FFC). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Ethical conduct of research

The authors state that they have obtained appropriate institutional review board approval or have followed the principles outlined in the Declaration of Helsinki for all human or animal experimental investigations. In addition, for investigations involving human subjects, informed consent has been obtained from the participants involved.

Additional information

Funding

This work is supported by NIH grants CA59702 and CA121205 (MJCH), the Eisenberg Scholar Research Fund (LS) and the Maeve McNicholas Memorial Foundation (FFC). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.