381
Views
0
CrossRef citations to date
0
Altmetric
Review

miRNAs as Mediators of Drug Resistance

&
Pages 369-381 | Published online: 24 Aug 2012
 

Abstract

Chemoresistance of tumors is often reported to be due to overexpression of efflux transporters or genetic alterations of signaling pathways. More recently, there is increasing evidence that epigenetic modification contributes to the phenomenon of drug resistance. Despite alteration of DNA methylation or histone modifications, deregulated miRNA expression patterns of tumor cells have been identified as interfering with drug response. Attempts to modify the expression of selected miRNAs have partly led to intriguing improvements of chemotherapy response. This review focuses on the major epigenetic mechanisms, including the role of miRNA expression contributing to drug resistance and the role of epigenetic drugs to overcome nonresponse arising under conventional chemotherapy.

Financial&competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.