246
Views
0
CrossRef citations to date
0
Altmetric
Research Article

DNA Methylation Profiling of Synovial Fluid FLS in Rheumatoid Arthritis Reveals Changes Common with Tissue-Derived FLS

, , , , , , , & show all
Pages 539-551 | Published online: 25 Jun 2015
 

Abstract

Aim: Alterations in DNA methylation contribute to the abnormal phenotype of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA). We profiled genome-wide DNA methylation in these cells from synovial fluid, a more readily accessible source of disease-associated cells. Patients & methods: Genome-wide DNA methylation was interrogated in fluid-derived FLS from five RA and six osteoarthritis patients using Human Methylation 450 Bead Chip and bisulfite pyrosequencing. Results: Array analysis identified 328 CpGs, representing 195 genes, that were differentially methylated between RA and osteoarthritis fluid-derived FLS. Comparison with the genes identified in two independent studies of tissue-derived FLS revealed 73 genes in common (~40%), of which 22 shared identity with both studies. Pyrosequencing confirmed altered methylation of these genes. Conclusion: Synovial fluid-derived RA FLS show methylation changes common with tissue-derived FLS, supporting the use of fluid-derived FLS for future investigations.

Acknowledgements

The authors would like to thank J Turner for assistance with the collection of patient data.

Financial & competing interests disclosure

This work was supported by funding provided by the Haywood Rheumatism Research and Development Foundation. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Ethical conduct

The authors state that they have obtained appropriate institutional review board approval or have followed the principles outlined in the Declaration of Helsinki for all human or animal experimental investigations. In addition, for investigations involving human subjects, informed consent has been obtained from the participants involved.

Additional information

Funding

This work was supported by funding provided by the Haywood Rheumatism Research and Development Foundation. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.