52
Views
0
CrossRef citations to date
0
Altmetric
Review

Viral Genome Maintenance and Latent Replication of Human Gammaherpesviruses

&
Pages 545-559 | Published online: 31 May 2013
 

Abstract

During gammaherpesvirus latency, only a few genes are expressed and required for maintenance of viral latency over a long period. While the expressed latent viral proteins play functional roles in viral latent DNA replication, they do not have replication-associated enzymatic activity such as polymerase or helicase activity. Viral genomes are detected in a similar copy number per infected cell, suggesting that the viral genome is replicated and segregated using host replication machinery. Kaposi‘s sarcoma-associated herpesvirus and EBV have trans-acting elements required for viral genome maintenance during latency; LANA1 and EBNA1, respectively. The proteins recruit host replication-associated proteins at their latent origins, leading to initiation of viral replication and segregation with host chromosomes once per cell cycle. In addition, viral latent origins (cis-elements) provide trans-element-binding sites as well as a sufficient space for recruitment of cellular factors. In this review, we describe the molecular mechanisms required for replication of the viral genome during latency, including interactions with cellular factors and the interplay between viral trans- and cis-elements.

Financial & competing interests disclosure

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2012R1A1A2004254) and by the Bio-industry Technology Development Program, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Additional information

Funding

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2012R1A1A2004254) and by the Bio-industry Technology Development Program, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.