161
Views
0
CrossRef citations to date
0
Altmetric
Review

Suicide Gene Therapy for Graft-Versus-Host Disease

, &
Pages 521-537 | Published online: 16 Jul 2010
 

Abstract

In allogeneic hematopoietic stem cell transplantation, donor-derived T cells are key players for early immune reconstitution and efficient engraftment, as well as the graft-versus-leukemia and graft-versus-infection effects. However, a severe and quite common life-threatening complication is the development of graft-versus-host disease, during which the alloreactive donor T cells attack the host. Controlling graft-versus-host disease while preserving the benefits of graft-versus-leukemia still constitutes a challenge. A promising approach for the control of graft-versus-host disease is suicide gene therapy, which involves the ex vivo genetic modification of donor T cells with a suicide gene that allows for the selective elimination of the cells in vivo if graft-versus-host disease occurs. This article presents an overview of such approaches with special reference to lessons learned from previous clinical experiences, as well as a discussion of critical factors in suicide gene therapy.

Financial & competing interests disclosure

The research in the authors‘ laboratory is supported by the Swedish Childhood Cancer Foundation, Clinigene NoE (FP6) and the Vinnova foundation. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Additional information

Funding

The research in the authors‘ laboratory is supported by the Swedish Childhood Cancer Foundation, Clinigene NoE (FP6) and the Vinnova foundation. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.