473
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanotechnology-Based Therapeutics for Targeting Inflammatory Lung Diseases

ORCID Icon & ORCID Icon
Pages 865-879 | Received 25 Nov 2021, Accepted 16 Feb 2022, Published online: 22 Mar 2022
 

Abstract

The physiochemical properties of drugs used in treating inflammation-associated lung diseases (i.e., asthma, chronic obstructive pulmonary disease, pulmonary fibrosis) play an important role in determining the effectiveness of formulations. Most commonly used drugs are associated with low solubility, low stability and rapid clearance, thus resulting in low bioavailability and therapeutic index. This review focuses on current trends and development of drugs (i.e., corticosteroids, long-acting β-agonists and biomacromolecules such as DNA, siRNA and mRNA) employed to treat inflammatory lung diseases. In addition, this review includes the current challenges of and future perspective with regard to nanotechnology in the treatment of inflammatory lung diseases.

Plain language summary

Various lung diseases, including asthma, chronic obstructive pulmonary disease and pulmonary fibrosis, are associated with persistent inflammation, aberrant lung structure and consequent loss of lung function. Common treatments for inflammatory-related lung diseases rely on the use of anti-inflammatory agents to relieve symptoms and alleviate lung injury. In some severe cases, patients do not respond to anti-inflammatory agents even though larger doses have been administered. Therefore, researchers have employed a nanotechnology approach to deliver drugs in an attempt to achieve effective therapeutic outcomes. These nanoparticles, which are usually designed with a particle size <1000 nm, are formulated to deliver various drugs (i.e., corticosteroids, long-acting β-agonists and biomacromolecules such as DNA, siRNA and mRNA) to treat inflammation-associated lung diseases. Nanoparticles can be delivered by inhalation, ingestion or injection. To date, several different nanoparticle carriers have been studied, including liposomes, solid lipid nanoparticles, polymer-based nanoparticles and dendrimers.

Financial & competing interests disclosure

The authors thank Malaysia’s Ministry of Higher Education for the financial support provided via the Fundamental Research Grant Scheme (FRGS/1/2018/STG03/UNIKL/02/2). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Additional information

Funding

The authors thank Malaysia’s Ministry of Higher Education for the financial support provided via the Fundamental Research Grant Scheme (FRGS/1/2018/STG03/UNIKL/02/2). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.