327
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Size Dependency of PLGA-Nanoparticle Uptake and Antifungal Activity Against Aspergillus Flavus

, , &
Pages 1381-1395 | Published online: 25 Oct 2011
 

Abstract

Aims: Itraconazole and coumarin-6 loaded polylactic-co-glycolic acid-nanoparticles (PLGA-ITZ- and PLGA-C6-NPs) were synthesized and tested for fungal cell uptake and antifungal ability based on particle size. Materials & Methods: PLGA-ITZ- and PLGA-C6-NPs were synthesized using an oil-in-water emulsion evaporation method. Fungal cell uptake and antifungal activity of the polymeric NPs was tested on Aspergillus flavus. Results: PLGA-C6-NPs of 203 nm associated with fungal cell surfaces and internalized efficiently, while 1206 nm NPs associated with cell surfaces were internalized less efficiently. Antifungal studies of PLGA-ITZ-NPs of 232, 630 and 1060 nm showed differences in inhibitory activity with 232 nm NPs showing superior activity at the lowest ITZ concentration of 0.003 mg/ml, followed by 630 and 1060 nm NPs. No differences in antifungal activity were observed at higher ITZ concentrations. Conclusion: The PLGA-ITZ-NP system can increase bioavailability of ITZ by improving its aqueous dispersibility and efficiently delivering ITZ to fungal cells via endocytosis.

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Ethical conduct of research

The authors state that they have obtained appropriate institutional review board approval or have followed the principles outlined in the Declaration of Helsinki for all human or animal experimental investigations. In addition, for investigations involving human subjects, informed consent has been obtained from the participants involved.

Acknowledgements

We would like to thank Carlos Astete for sharing his knowledge on nanoparticle synthesis, Cathy DeRobertis for her help with fungal studies, Matt Brown for his extensive knowledge and assistance in microscopy studies, Erica Muse for assistance in nanoparticle studies, and Mandy Lopez and the LECOR Lab of the LSU Veterinary School of Medicine for use of their microplate reader.

Additional information

Funding

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.