519
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Using Genetic and Clinical Factors to Predict Tacrolimus Dose in Renal Transplant Recipients

, , , , , , , , & show all
Pages 1389-1402 | Published online: 03 Nov 2010
 

Abstract

Aims: Tacrolimus has a narrow therapeutic window and shows significant interindividual difference in dose requirement. In this study we aim to first identify genetic factors that impact tacrolimus dose using a candidate gene association approach, and then generate a personalized algorithm combining identified genetic and clinical factors to predict individualized tacrolimus dose. Materials & methods: We screened 768 SNPs in 15 candidate genes in metabolism, transport and calcineurin inhibition pathways of tacrolimus, for association with tacrolimus dose in a discovery cohort of 96 patients. Results: Four polymorphisms in CYP3A5 and one polymorphism in CYP3A4 were identified to be significantly associated with tacrolimus stable dose (p < 8.46 × 10-5). The same SNPs were identified when dose-normalized trough tacrolimus concentration was analyzed. The CYP3A5*1 allele was associated with significantly higher stable dose, bigger dose increase, higher risk of being underdosed and lower incidence of post-transplant hyperlipidemia. ABCB1 polymorphisms were not associated with stable dose. No significant difference was found between CYP3A5 expressers and nonexpressers in incidence of acute rejection and time to first rejection. Age, ethnicity and CYP3A inhibitor use could predict 30% of tacrolimus dosing variability. Adding the identified genetic polymorphisms to the algorithm increased the predictability to 58%. In two validation cohorts of 77 and 64 patients, the algorithm containing both genetic and clinical factors produced correlation coefficients of 0.63 and 0.42, respectively. This algorithm gave a prediction of the stable doses closer to the actual doses when compared with another algorithm based only on the CYP3A5 genotype. Conclusion:CYP3A5 genotype is the most significant genetic factor that impacts tacrolimus dose among the genes studied. This study generated the first pharmacogenomics model that predicts tacrolimus stable dose based on age, ethnicity, genotype and comedication use. Our results highlight the importance of incorporating both genetic and clinical, demographic factors into dose prediction.

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Ethical conduct of research

The authors state that they have obtained appropriate institutional review board approval or have followed the principles outlined in the Declaration of Helsinki for all human or animal experimental investigations. In addition, for investigations involving human subjects, informed consent has been obtained from the participants involved.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.