31
Views
0
CrossRef citations to date
0
Altmetric
Review

Capturing Brain Metrics of Neuropathic Pain Using Nuclear Magnetic Resonance

&
Pages 395-409 | Published online: 05 Sep 2013
 

Abstract

SUMMARY Neuropathic pain is typically caused by a lesion or dysfunction in the nervous system that results in both negative (i.e., reduced sensitivity) and positive symptoms (i.e., paraesthesia, spontaneous ongoing pain with shooting, electric shock-like sensations and abnormal responses to evoked pain). Intriguingly, chronic pain disorders manifest profound alterations in brain structure and function, and thus, modern nuclear magnetic resonance (NMR) techniques have allowed us to begin to dissect the complexities of how neuropathic pain affects the brain. NMR approaches can be used as an independent measure to improve our understanding of key changes in brain structure, function and chemistry in chronic neuropathic pain. Accordingly, NMR techniques provide neurobiological metrics that allow us to understand the neurobiological basis of chronic neuropathic pain. Additionally, although at an early stage, NMR methods can also be useful to define clinical metrics to predict chronification of neuropathic pain and responses to drugs. This article provides a review of NMR techniques and their capacity to study spontaneous pain and evoked pain, as well as structural, functional and neurochemical alterations that have repeatedly been associated with chronic neuropathic pain. Finally, the importance for quantifying disease state and treatment efficacy in neuropathic pain using NMR techniques is discussed.

Financial & competing interests disclosure

D Borsook is supported by a grant from NINDS (K24 NS064050). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Additional information

Funding

D Borsook is supported by a grant from NINDS (K24 NS064050). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.