504
Views
34
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

The influence of support properties and complexity on fracture strength and fracture mode of all-ceramic fixed dental prostheses

, &
Pages 229-237 | Received 23 Nov 2010, Accepted 25 Nov 2010, Published online: 13 Jan 2011
 

Abstract

Objective. When a new material is released, clinical studies are indicated. For the clinical studies to be defensible, in-vitro studies, which are as clinically relevant as possible, must be performed. The aim of this study was to investigate how the choice of material used for supporting tooth analogues and support complexity influences test results concerning the fracture strength of fixed dental prostheses (FDPs) made from a brittle material: Y-TZP. Material and methods. Twenty-four FDPs were produced in Y-TZP. The FDP cores were subjected to heat treatment to simulate veneering and then thermocycled for 5000 cycles to simulate ageing. The FDPs were divided into three groups and were cemented on tooth-supporting analogues made from aluminium, polymer and DuraLay. The FDPs were preloaded for 10,000 cycles and finally loaded to fracture. Results. There were no significant differences in load to fracture or fracture mode between the groups cemented on polymer and DuraLay tooth analogues. The FDPs cemented on aluminium tooth analogues showed a significantly higher load at fracture and a different fracture mode. Conclusions. Within the limitations of this in-vitro study, the following could be concluded. To achieve mutually comparable results there is a need for a standardized, simple test set-up for in-vitro testing of all-ceramic FDPs intended for cementation upon natural teeth. Resilient, non-complex and resilient, complex tooth analogues give comparable test results when the test set-up is unchanged in all other aspects. Non-resilient (with an elastic modulus equivalent to or higher than that of aluminium) tooth analogues give high and unrealistic load-at-fracture values together with adverse fracture modes compared to FDPs failing in clinical situations.

Acknowledgements

The Y-TZP FPDs were kindly provided by Nobel Biocare (Zürich, Switzerland).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.