246
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Identification of potential drugs for Parkinson's disease based on a sub-pathway method

, , , &
Pages 318-325 | Received 31 Jul 2014, Accepted 07 Nov 2014, Published online: 25 Sep 2015
 

Abstract

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in ageing individuals. Current therapeutic regimen suffers from general side effects and a poor efficiency for PD symptoms. The need for development new therapeutic agents for PD is urgent. Here, we aimed to explore the metabolic mechanism of PD and identified potential novel agents for PD by a sub-pathway-based method. By using the GSE7621 microarray data from the GEO database, we first identified the 1226 differentially expressed genes (DEGs) between PD and normal samples. Then we identified 19 significant enriched metabolic sub-pathways, which may involve in development of PD. Finally, by an integrated analysis of PD-involved sub-pathways and drug-affected sub-pathways, we identified 49 novel small molecular drugs capable to target the PD-involved sub-pathways. Our method could not only identify existing drug (apomorphine) for PD, but also predict potentially novel agents (ketoconazole and astemizole), which might have therapeutic effects via targeting some key enzymes in arachidonic acid metabolism. These candidate agents identified by our approach may provide insights into a novel therapy approach for PD.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.