50
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Serotonergic Neuronal Sprouting as a Potential Mechanism of Recovery in Multiple Sclerosis

Pages 131-138 | Received 07 Oct 1998, Published online: 07 Jul 2009
 

Abstract

Experimental allergic encephalomyelitis (EAE) is widely considered as an animal model of multiple sclerosis (MS). Damage to the bulbospinal serotonergic (5-HT) neurons occurs in the early paralytic stages of EAE in rats with the severity of neurologic signs corresponding to spinal serotonergic depletion. Neurologic recovery of EAE rats is associated with reestablish-ment of spinal 5-HT transmission possibly through sprouting of undamaged axons and nerve terminals. Damage to the bulbospinal serotonergic fibers also occurs in patients with MS (as reflected by reduced lumbar CSF 5-HIAA levels) and may contribute to several manifestations of the disease including autonomic dysregulation, sensory symptoms (i.e., paresthesias, pain) and motor symptoms (weakness, spasticity, clonus). Spinal serotonergic neuronal sprouting with regeneration of 5-HT nerve terminals may also occur in the early stages of MS and may be associated with spontaneous remission of MS symptoms following an acute relapse. Sprouting of serotonergic neurons may also explain the disparity in MS between the extent of demyelinating plaques and clinical signs of the disease. The chronic course of MS may be associated with progressive axonal degenerative changes with reduction of serotonergic nerve terminals and loss of their sprouting capability. It is proposed that the beneficial effects of treatment with AC pulsed electromagnetic fields on the symptoms and course of the disease in patients with chronic progressive MS may be related in part to renewed sprouting of serotonergic neurons.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.