146
Views
13
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Transplantation of healthy but not diabetic outgrowth endothelial cells could rescue ischemic myocardium in diabetic rabbits

, , , , , & show all
Pages 313-321 | Received 25 Jan 2010, Accepted 25 Feb 2010, Published online: 17 May 2010
 

Abstract

Objective. There are two types of endothelial progenitor cell (EPC) in circulation, early EPC and outgrowth endothelial cell (OEC). Diabetes impairs the function of EPC, but it is not clear whether transplantation of OECs can rescue ischemic myocardium in diabetes. In this study, we compared the function of diabetic and healthy OECs in vitro. Then we administered diabetic and healthy OECs intramyocardially and compared their contribution to vasculogenesis in diabetic rabbits. Methods. Outgrowth endothelial cells from diabetic and healthy rabbits were isolated and subjected to in vitro proliferation, tube-forming, angiogenic cytokine assays. Exogenous diabetic and healthy OECs were analyzed for therapeutic efficacy in an acute ischemia model of diabetic rabbits. LV function was assessed using echocardiography. The capillary density and fibrosis area were evaluated. MRNA expression of VEGF and bFGF was analyzed using relative realtime quantitive PCR. Results. Proliferation, tube-forming, secretion of VEGF and bFGF of diabetic OECs were significantly reduced compared with healthy OECs. In diabetic rabbits, healthy OECs transplantation could increase capillary density and improve cardiac function, decrease fibrosis area compared with diabetic OEC and the control group. Real time PCR indicated that mRNA expression of VEGF and bFGF were augmented more in the healthy OEC group than those in the control and diabetic OEC groups. Conclusions. These findings suggest that diabetes impairs the function of OECs. Transplantation of healthy OECs may rescue the ischemic myocardium by neovasculogenesis and paracrine effect in diabetic rabbits. However, autologous transplantation of diabetic OEC could not enhance cardiac function.

Acknowledgements

The authors would like to thank Dr Xu Yan for the laser confocal imaging and Dr Zhao Kai for the diabetic model.

Funding

This work was supported in part by the nature science funding project of Tianjin.

Declaration of interest: None declared.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.