9
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Deformability and viscoelasticity of human erythrocyte membrane

Pages 63-66 | Published online: 08 Jul 2009
 

Abstract

The human red cell membrane behaves as a viscoelastic solid material. Since the concentrated haemoglobin solution within the red blood cell is a Newtonian liquid, it is not surprising that the cell's shape (its memory) and its resistance to deformation comes from the elastic, solid membrane. What is surprising is that the cell's resistance to an imposed rate of deformation also comes almost entirely from the membrane. That is, thermodynamically irreversible (rapid) deformation processes are dominated by dissipation in the membrane rather than that in the cytoplasm. Since experimental measurements indicate that the membrane has a characteristic response time of 0.1 s, rapid cellular deformation processes (those that occur within 0.1 s or less) will be strongly resisted by membrane dissipation. Such a situation can occur in the cell filtration experiment when a cell rapidly moves from a large reservoir to a small pore.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.