10
Views
37
CrossRef citations to date
0
Altmetric
Original Article

Phospholipase C from Clostridium perfringens Stimulates Phospholipase A2-Mediated Arachidonic Acid Release in Cultured Intestinal Epithelial Cells (INT 407)

&
Pages 363-371 | Received 19 Jun 1989, Accepted 26 Oct 1989, Published online: 08 Jul 2009
 

Abstract

The mechanisms by which phospholipase C from Clostridium perfringens stimulates release of arachidonic acid (AA) in cultured intestinal epithelial cells (INT-407) were investigated. INT-407 cells were first allowed to incorporate 14C-labeled AA into their phospholipids; the labeled cells were then exposed to phospholipase C, and the release of free l4C-AA was determined. Phospholipase C caused a rapid (3 min) intracellular rise of free l4C-AA, followed by a considerable, dose- and time-dependent release of l4C-AA into the extracellular medium. For comparison, the calcium ionophore A23187 also caused a rapid mobilization of free 14C-AA, but a much lower extracellular 14C-AA release than phospholipase C during longer (1 h) incubation. The 14C-AA release was accompanied by a degradation of l4C-myo-inositol-labeled phosphatidylinositols and was reduced by the protein kinase C inhibitor l-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7). Both phospholipase C- and A23187-stimulated 14C-AA release was associated with degradation of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol and was reduced by nor-dihydroguaiaretic acid and 4-bromophenacyl bromide, two known phospholipase A2 inhibitors. In addition, the 14C-AA release was reduced by the calmodulin inhibitors trifluoperazine, compound 48/80, and A'-(6-aminohexyl)-5-chloro-l-naphthalene-sulfonamide (W-7). These findings indicate that phospholipase C from C. perfringens stimulates phospholipase A2-mediated AA release from human intestinal epithelial cells and suggest that this stimulation is brought about via processes involving phosphatidylinositol breakdown and activation of calmodulin and protein kinase C. It is possible that this phospholipase C-evoked AA release may contribute to the mucosal pathologic condition in diseases with altered intestinal microbial flora.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.