Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 40, 2010 - Issue 11
104
Views
4
CrossRef citations to date
0
Altmetric
Molecular Toxicology

Cyclosporine-induced changes in drug metabolizing enzymes in hyperlipemic rabbit kidneys could explain its toxicity

, , , , &
Pages 772-781 | Received 10 Jun 2010, Accepted 17 Aug 2010, Published online: 14 Sep 2010
 

Abstract

  1. This study investigates the mechanism of cyclosporine A (CsA)-mediated nephrotoxicity by examining the hypothesis that CsA toxicity is mediated through its effect on the kidney drug metabolizing enzymes in a hyperlipemic rabbit model.

  2. Twenty-four female New Zealand white rabbits divided into four groups. Group 1 received regular diet. Group 2 received 1% cholesterol diet. Group 3 received CsA (25 mg/kg, orally once daily) and group 4 received 1% cholesterol diet and CsA (25 mg/kg, orally once daily). Cytochrome P450 2E1 (CYP2E1) activity in kidney microsomes was assessed by measuring p-nitrophenol hydroxylase activity. Generation of reactive oxygen species (ROS) was assessed by measuring malondialdehyde (MDA) and the protein carbonyl. Effect of CsA and hyperlipidemia on the antioxidant proteins were also assessed using standard techniques.

  3. CsA but not the high-cholesterol diet induced significant elevation in MDA, protein carbonyl and CYP2E1 activities in the kidney. The addition of cholesterol to CsA normalized ROS markers without affecting the CsA-enhanced CYP2E1 activity. Alone, CsA caused characteristic tubular injury, whereas the addition of high-cholesterol diet to CsA nearly abolished the tubular damage.

  4. CsA-enhanced rabbit kidney ROS and CYP2E1 activities. Hyperlipidemia attenuates CsA tubular injury, most probably due to normalization of renal ROS, but not CYP2E1 activity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.