Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 41, 2011 - Issue 5
267
Views
8
CrossRef citations to date
0
Altmetric
Clinical Pharmacokinetics and Metabolism

In vitro metabolism of magnolin and characterization of cytochrome P450 enzymes responsible for its metabolism in human liver microsomes

, , , , , & show all
Pages 358-371 | Received 07 Oct 2010, Accepted 17 Dec 2010, Published online: 04 Feb 2011
 

Abstract

  1. Magnolin is a major bioactive component found in Shin-i, the dried flower buds of Magnolia fargesii; it has anti-inflammatory and anti-histaminic activities. Incubation of magnolin in human liver microsomes with an nicotinamide adenine dinucleotide phosphate-generating system resulted in the formation of five metabolites, namely, O-desmethyl magnolin (M1 and M2), didesmethylmagnolin (M3), and hydroxymagnolin (M4 and M5).

  2. In this study, we characterized the human liver cytochrome P450 (CYP) enzymes responsible for the biotransformation of three major metabolites—M1, M2, and M4—of magnolin. CYP2C8, CYP2C9, CYP2C19, and CYP3A4 were identified as the major enzymes responsible for the formation of the two O-desmethyl magnolins (M1 and M2), on the basis of a combination of correlation analysis and experiments, including immunoinhibition of magnolin in human liver microsomes and metabolism of magnolin by human cDNA-expressed CYP enzymes. CYP2C8 played a predominant role in the formation of hydroxymagnolin (M4).

  3. These results suggest that the pharmacokinetics of magnolin may not be affected by CYP2C8, CYP2C9, CYP2C19, and CYP3A4 responsible for the metabolism of magnolin or by the co-administration of appropriate CYP2C8, CYP2C9, CYP2C19, and CYP3A4 inhibitors or inducers due to the involvement of multiple CYP enzymes in the metabolism of magnolin.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.