Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 43, 2013 - Issue 8
491
Views
49
CrossRef citations to date
0
Altmetric
Molecular Toxicology

Chemical reactivity and biological activity of chalcones and other α,β-unsaturated carbonyl compounds

, , , &
Pages 711-718 | Received 20 Sep 2012, Accepted 26 Nov 2012, Published online: 23 Jan 2013
 

Abstract

1. Chalcones are structural analogues of benzalacetophenone (BAP). Several derivatives have been identified in plants and anticarcinogenic and anti-inflammatory properties were attributed to the compounds, probably related to their direct antioxidant activity or stimulatory effects on the expression of endogenous defence enzymes like hemeoxygenase-1 (HO-1). HO-1 expression is triggered by the Nrf2-Keap1 signalling pathway, initiated by the addition of chalcones to thiol groups of Keap1 via Michael-type reaction.

2. The present study used a model system estimating the reactivity of different synthetic chalcones and other α,β-unsaturated carbonyl compounds with thiols and compared the chemical reactivity with the biological activity, measured by HO-1 expression in human dermal fibroblasts.

3. Chemical reactivity with the thiol group of N-acetylcysteine was determined with 5,5′-dithiobis-(2-nitrobenzoic acid) and followed chemical principles of structure–reactivity relationship. Most reactive were sulforaphane, dimethylfumarate, chalcone 3 ((2E)-1-phenyl-3-pyrimidin-2-ylprop-2-en-1-one) and chalcone 7 (1,3-diphenylprop-2-yn-1-one). This result demonstrates that α,β-unsaturated carbonyl derivatives react with thiols differently. All compounds were also biologically active; however, expression of HO-1 was not only related to the chemical reactivity but also to the lipophilicity of the molecules which likely affected transmembrane uptake. Most efficient inducers of HO-1 expression were BAP, 4-hydroxynonenal and chalcone 1 (4-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzonitrile), chalcone 5 ((2E)-1-phenyl-3-[4-(trifluoromethyl)-phenyl]prop-2-en-1-one) and chalcone 7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.