Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 45, 2015 - Issue 4
318
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the prerequisites for the optimization of specific plasma protein binding as a strategy for the reduction of first-pass hepatic metabolism

Pages 286-301 | Received 24 Sep 2014, Accepted 15 Oct 2014, Published online: 03 Nov 2014
 

Abstract

1. It is hypothesized that the deliberate structural tailoring of compounds designed for drug use to increase the specific plasma protein binding can be used to reduce first-pass hepatic metabolism. To test the feasibility of this hypothesis, a dataset of drugs with plasma protein binding of 90% or above divided into three classes including 50 acids, 44 bases and 69 neutrals was analyzed.

2. Among the drugs with ≥99% plasma protein binding, the fraction of the total dose existing in free form in vivo (free dose fraction) decreased in the following order: acids (0.55%) > neutrals (0.16%) > bases (0.08%). The order was different for the fraction of the total dose that existed in plasma protein bound form (plasma protein bound dose fraction): acids (58%) > neutrals (17%) = bases (18%).

3. The free fraction was poorly correlated with the partition coefficient (Log P). The lower aqueous solubility associated with high plasma protein binding was explained by differences in Log P and not by the plasma protein binding per se. The logarithm of the extrarenal clearance was correlated with Log P. For acids and bases, extrarenal clearance was also correlated with fu. For neutrals, plasma protein binding had no protective effect.

Declaration of interest

I declare that I have no conflicts of interest related to this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.