Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 25, 1995 - Issue 10
91
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Fungal transformations of antihistamines: metabolism of brompheniramine, chlorpheniramine, and pheniramine to N-oxide and N-demethylated metabolites by the fungus Cunninghamella elegans

, , &
Pages 1081-1092 | Received 01 Apr 1995, Published online: 22 Sep 2008
 

Abstract

1. Two strains of the filamentous fungus Cunninghamella elegans (ATCC 9245 and ATCC 36112) were screened for their ability to metabolize three alkylamine-type antihistamines; brompheniramine, chlorpheniramine and pheniramine.

2. Based on the amount of parent drug recovered after 168 h of incubation, C. elegans ATCC 9245 metabolized 60, 45 and 29% of brompheniramine, chlorpheniramine and pheniramine added respectively. The results from strain ATCC 36112 were essentially identical to those of strain ATCC 9245.

3. The metabolic products of N-oxidation and N-demethylation were isolated by reversed-phase hplc and identified by analysing their mass and proton nmr spectra. For all three antihistamines, the mono-N-demethylated metabolite was produced in the greatest amounts. The chloro- and bromo-substituents appeared not to affect the route of metabolism but did influence the relative amounts of metabolites produced.

4. Circular dichroism spectra of the metabolites and the unmetabolized parent antihistamines showed each to be a racemic mixture of the (+) and (-) optical isomers. In addition, comparison of the metabolism of racemic chlorpheniramine to that of optically pure (+) chlorpheniramine showed no significant differences in the ratios of metabolites produced. There was therefore no metabolic stereoselectivity observed by the fungal enzymes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.